Introduction to higher-order model-checking

Charles Grellois

LIS — équipe LIRICA

20 mai 2019

Charles Grellois (AMU) Intro to HOMC

What is model-checking?

Charles Grellois (AMU) Intro to HOMC

The halting problem

A natural question: does a program always terminate?

Undecidable problem (Turing 1936): a machine can not always determine
the answer.

What if we use approximations?

Charles Grellois (AMU) Intro to HOMC May 20, 2019 3/45

Model-checking

Approximate the program — build a model M.

Then, formulate a logical specification ¢ over the model.

Aim: design a program which checks whether

M E .

That is, whether the model M meets the specification .

Charles Grellois (AMU) Intro to HOMC May 20, 2019 4/45

An example
Main = Listen Nil

Listen x = if end_signal() then x
else Listen received_data() :: x

Charles Grellois (AMU) Intro to HOMC May 20, 2019 5/45

An example

Main
Listen x

A tree model:

Listen Nil
if X
Listen data X

if
/\
Nil if
/\
data if
|
Nil data
|

data
|

Nil

We abstracted conditionals and datatypes.
The approximation contains a non-terminating branch.

Charles Grellois (AMU) Intro to HOMC

May 20, 2019

5/45

Finite representations of infinite trees

if
/\
Nil if

/\

data if
I

Nil data

I
data

|
Nil

is not regular: it is not the unfolding of a finite graph as

Charles Grellois (AMU) Intro to HOMC

Finite representations of infinite trees

if
/\
Nil if
/\
data if
|
Nil data :
|

data
|
Nil

but it is represented by a higher-order recursion scheme (HORS).

Charles Grellois (AMU) Intro to HOMC

Higher-order recursion schemes

Some regularity for infinite trees

Charles Grellois (AMU) Intro to HOMC May 20, 2019 7/45

Higher-order recursion schemes

Main = Listen Nil
Listen x = if end_signal() then x
else Listen received_data() :: x

is abstracted as

G — S = L Nil
- Lx = if x(L (data x))

which represents the higher-order tree of actions

if
/\
Nil if
///i
data
|
Nil

Charles Grellois (AMU) Intro to HOMC May 20, 2019 8/45

Higher-order recursion schemes

G — S = L Nil
B Lx = if x(L (data x))

Rewriting starts from the start symbol S:

Charles Grellois (AMU) Intro to HOMC

Higher-order recursion schemes

S = L Nil
g =)
Lx = if x(L (data x))
if
L Nil L
g |
Nil data
Nil

Charles Grellois (AMU) Intro to HOMC

Higher-order recursion schemes

S = L Nil
g =)
Lx = if x(L (data x))
if
Nil if

if /N
///\\\ data L

Nil L | |
| g Nil data

data |
| data

Nil |
Nil

Charles Grellois (AMU) Intro to HOMC May 20, 2019 9/45

Higher-order recursion schemes

G — S = L Nil
B Lx = if x(L (data x))

if

TN

Nil if

N

data if

@ - A

Nil data

data

Nil

Charles Grellois (AMU) Intro to HOMC May 20, 2019 9/45

Higher-order recursion schemes

G — S = L Nil
B Lx = if x(L (data x))

HORS can alternatively be seen as simply-typed A-terms with

simply-typed recursion operators Y, : (0 — o) — 0.

Charles Grellois (AMU) Intro to HOMC May 20, 2019 9/45

Higher-order recursion schemes

G — S = L Nil
B Lx = if x(L (data x))

HORS can alternatively be seen as simply-typed A-terms with

simply-typed recursion operators Y, : (0 — o) — 0.

Charles Grellois (AMU) Intro to HOMC May 20, 2019 9/45

Alternating parity tree automata

Checking specifications over trees

(see Chapter 2)

Charles Grellois (AMU) Intro to HOMC May 20, 2019 10/ 45

Monadic second order logic

MSO is a common logic in verification, allowing to express properties as:

« all executions halt »
« a given operation is executed infinitely often in some execution »

« every time data is added to a buffer, it is eventually processed »

Charles Grellois (AMU) Intro to HOMC May 20, 2019 11 /45

Alternating parity tree automata

Checking whether a formula holds can be performed using an automaton.
For an MSO formula ¢, there exists an equivalent APT A, s.t.

G) E ¢ iff Ay has a run over (G).

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (AMU) Intro to HOMC May 20, 2019 12 /45

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 6(qo,1f) = (2,q0) A (2, qu).

Charles Grellois (AMU) Intro to HOMC

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 9(qo,if) = (2,q90) A (2, q1).

if qo if qo
i i w it
dataA; n da(> data/>
Nil data : Nil data : Nil data :
Nil Nil Nil

Charles Grellois (AMU) Intro to HOMC May 20, 2019 13 /45

Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

C1
(€]
C3
Ca

C5

Charles Grellois (AMU) Intro to HOMC May 20, 2019 14 / 45

Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.
For a MSO formula ¢:

Ay has a winning run-tree over (G) iff G) E o.

Charles Grellois (AMU) Intro to HOMC May 20, 2019 14 / 45

The higher-order model-checking problems

Charles Grellois (AMU) Intro to HOMC May 20, 2019 15 /45

The (local) HOMC problem
Input: HORS G, formula ¢.

Output: true if and only if (G) F .

Charles Grellois (AMU) Intro to HOMC

The (local) HOMC problem
Input: HORS G, formula ¢.

Output: true if and only if (G) F ¢.

Example: ¢ = « there is an infinite execution »

if
Wi ar
da(\if
N‘il data
da‘ta
Nil

Output: true.
May 20, 2019

16 /45

The global HOMC problem
Input: HORS G, formula ¢.

Output: a HORS G* producing a marking of (G).
Example: ¢ = « there is an infinite execution »

Output: G* of value tree:

if*®
/\
Nil if*®
/\
data if®
\ —
Nil data
|
data
|
Nil

Charles Grellois (AMU) Intro to HOMC May 20, 2019 17 / 45

The selection problem
Input: HORS G, APT A, state g € Q.

Output: false if there is no winning run of A over (G).
Else, a HORS G9 producing a such a winning run.

Example: ¢ = « there is an infinite execution », go corresponding to ¢

Output: G9% producing
if9o
if9o

if9o
|

Charles Grellois (AMU) Intro to HOMC May 20, 2019 18 /45

Purpose of my thesis

These three problems are decidable, with elaborate proofs (often) relying
on semantics.

Our contribution: an excavation of the semantic roots of HOMC, at the
light of linear logic, leading to refined and clarified proofs.

Charles Grellois (AMU) Intro to HOMC May 20, 2019 19 /45

Recognition by homomorphism

Where semantics comes into play

Charles Grellois (AMU) Intro to HOMC May 20, 2019 20 /45

Automata and recognition

For the usual finite automata on words: given a regular language L C A*,
there exists a finite automaton A recognizing L

if and only if. ..

A* M

there exists a finite monoid M, a subset K C M
and a homomorphism ¢ : A* — M such that L = ¢~ 1(K).

Charles Grellois (AMU) Intro to HOMC May 20, 2019 21 /45

Automata and recognition

The picture we want:

Terms Domain

(after Aehlig 2006, Salvati 2009)

but with recursion and w.r.t. an APT.

Charles Grellois (AMU) Intro to HOMC

Intersection types and alternation

A first connection with linear logic

Charles Grellois (AMU) Intro to HOMC May 20, 2019 23 /45

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):
(g0, 1) = (2,90) A (2, q1)
can be seen as the intersection typing
if 0= (q0Aq1) = qo
refining the simple typing

if : o—>0—o0

Charles Grellois (AMU) Intro to HOMC May 20, 2019 24 /45

Alternating tree automata and intersection types

In a derivation typing the tree if Ty T5:

5
App

0 if : 0 — (q0Aq1)— qo 0 : :
O Fif T1 : (oA G1) — qo 0+ Ty : qo OFTo:q
@l—if T1 TQZQO

App

Intersection types naturally lift to higher-order — and thus to G, which
finitely represents (G).

Theorem (Kobayashi 2009)
FG: q ifF the ATA A, has a run-tree over (G). J

Charles Grellois (AMU) Intro to HOMC May 20, 2019 25 /45

A closer look at the Application rule

In the intersection type system:

AFt: (0 AN B0y)— 0 AiFu: 6
A,A, ..., A, b tu: 0

App

Charles Grellois (AMU) Intro to HOMC

A closer look at the Application rule

In the intersection type system:

AFt: (0 AN B0y)— 0 AiFu: 6
A,A, ..., A, b tu: 0

App

This rule could be decomposed as:

A F w0 Yie{l,..., n}
A t: (AL 0)—=0 Ar,..., A Fu: AL 6
A Ay, A F tu: @

Right A

Charles Grellois (AMU) Intro to HOMC May 20, 2019 26 /45

A closer look at the Application rule

AjFu:0 Vie{l,...,n} _
Abt: (N)0 Do bdaFu AL, 6 EEA
. i=1 I 1y n u: /\i=1 9’
A A, A F tu: 0

Linear decomposition of the intuitionistic arrow:

A=B =1A—8B

Two steps: duplication / erasure, then linear use.

Right A\ corresponds to the Promotion rule of indexed linear logic.
(see G.-Mellies, ITRS 2014)

Charles Grellois (AMU) Intro to HOMC May 20, 2019 27 /45

Intersection types and semantics of linear logic

A=B =1A—8B

Two interpretations of the exponential modality:

Qualitative models Quantitative models
(Scott semantics) (Relational semantics)

LA = Phin(A) A = Miin(A)

[o= o] = Pin(Q) x Q [o= o] = M#(Q) x Q
{90, g0, a1} = {qo, o1} [90, q0, 1] # [qo0, 1]
Order closure Unbounded multiplicities

Charles Grellois (AMU) Intro to HOMC May 20, 2019 28 /45

An example of interpretation
In Rel, one denotation:

([q0, g1, a1], [q1]; qo0)

In ScottL, a set

AX containing the principal
‘ type
Ay
‘ ({qu ql}? {ql}a qO)
4 do but also
a qo a qi ({q0, 91, g2}, {q1}, qo0)

NN and

X qo Yy g1 X q1 X Q1
({90, a1}, {90, a1}, q0)

and ...
Charles Grellois (AMU) Intro to HOMC May 20, 2019 29 /45

Intersection types and semantics of linear logic

Bucciarelli— Ehrhard

Rel, T Corvalho Non-idempotent types
Ehrhard Ehrhard
Ehrhard
ScottlL, Toro Idempotent types

(Bucciarelli-Ehrhard 2001, de Carvalho 2009, Ehrhard 2012, Terui 2012)
Fundamental idea:

[t] = {60|0F t:0}

for a closed term.

Charles Grellois (AMU) Intro to HOMC May 20, 2019 30/45

Intersection types and semantics of linear logic

Bucciarelli— Ehrhard

Rel, T Corvalho Non-idempotent types
Ehrhard Ehrhard
Ehrhard
ScottlL, Toro Idempotent types

Let t be a term normalizing to a tree (t) and A be an alternating
automaton.

A accepts (t) fromqg & qget] & 0 t:q:o
(see Chapter 5)

Extension with recursion and parity condition?

Charles Grellois (AMU) Intro to HOMC May 20, 2019 30/45

Adding parity conditions
to the type system

Charles Grellois (AMU) Intro to HOMC May 20, 2019 31/45

Alternating parity tree automata

We add coloring annotations to intersection types:

(g0, if) = (2,90) A (2, q1)

now corresponds to
if @ 0 — (DQ(QO) qo N DQ(ql) ql) — qo
Idea: if is a run-tree with two holes:

if

/\

(oo [lon

A new neutral (least) color: e.

We refine the approach of Kobayashi and Ong in a modal way (see Chapter
6).

Charles Grellois (AMU) Intro to HOMC

May 20, 2019 32/45

An example of colored intersection type

Set Q(qo) = Oand Q(¢q1) = 1.

a qo a qi

NN

X qo Yy q1 X q X q

has now type
Uogo AUi1gr = Uigr =

Note the color 0 on qp. ..

Charles Grellois (AMU) Intro to HOMC May 20, 2019 33/45

A type-system for verification (Grellois-Melliés 2014)

Axiom x: 0.0, - x:0;

{(1,94) | 1 <i<n1<j<k} satisfies 0a(q,a)

kl kn
@ Fa: /\j=1 DQ(qu) qi1; — .. = =1 DQ(qW.) Anj —q

Al—t:(Dm191 /\-'-/\Dmkgk)—>9 AiFu:6;
A+0,A0 + ... +0,08 F tu: 0

App

A, x N On 0 = t 00
A+ /\x.t:(/\ Dm/.9,~)—>0

icl

N-=Rr(F):0
F:0.06F F:0

Charles Grellois (AMU) Intro to HOMC May 20, 2019 34 /45

fix

A type-system for verification

A colored Application rule:

Al—t:(Dm191 /\-~-/\|:|mk9k)—>9 Aibu:6;
A+ DA+ ..+ 05,0 F twu: 0

App

Charles Grellois (AMU) Intro to HOMC May 20, 2019 35 /45

A type-system for verification

A colored Application rule:

Al—t:(Dmlﬂl /\--~/\Dmk9k)—>6 Aibu: 6;
A+0O,0 + ... +0, 08 F tu: 0

App

inducing a winning condition on infinite proofs: the node

A,"‘UZQ,’

has color m;, others have color ¢, and we use the parity condition.

Charles Grellois (AMU) Intro to HOMC May 20, 2019

35/45

A type-system for verification

We now capture all MSO (see Chapter 6-8):

Theorem (G.-Melliés 2014, from Kobayashi-Ong 2009)

S : qo FS : qo admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over (G).

We obtain decidability by considering idempotent types.

Our reformulation
@ shows the modal nature of OJ (in the sense of S4),
@ internalizes the parity condition,

@ paves the way for semantic constructions.

Charles Grellois (AMU) Intro to HOMC

May 20, 2019 36 /45

Colored models of linear logic

Charles Grellois (AMU) Intro to HOMC May 20, 2019 37/45

A closer look at the Application rule

Al—t:(D,,hOl /\-'-/\Dmkak)—}e A Fu

20
A+ Onbi+ .+ 0,0 F tu:0
could be decomposed as:
A1FU101 Ak}—ulek .
Oy A1 F 0 Oy 01 Oy Ak F 0 Oy Ok Efg::?\

ig

Al—t:(o EI,,,,.Q,-)%G OmAr, o Om D B ou s Ay Oy 6

A OmBy, . Omby, © tu:0

Right O looks like a promotion. In linear logic:

A= B

IDA—B

We show that the modality [J distributes over the exponential in the
semantics.

Charles Grellois (AMU) Intro to HOMC May 20, 2019 38 /45

Colored semantics

We extend:

@ Rel with countable multiplicities, coloring and an inductive-coinductive
fixpoint (Chapter 9)

@ Scottl with coloring and an inductive-coinductive fixpoint (Chapter
10).

Methodology: think in the relational semantics, and adapt to the Scott
semantics using Ehrhard’s 2012 result:

the finitary model ScottL is the extensional collapse of Rel.

Charles Grellois (AMU) Intro to HOMC May 20, 2019 39/45

Infinitary relational semantics

Extension of Rel with infinite multiplicities:

éA - Mcount(A)

and coloring modality (parametric comonad)

OA = ColxA

Composite comonad: 4 = 4 [Jis an exponential.

Induces a colored CCC Rel; (— model of the A-calculus).

Charles Grellois (AMU) Intro to HOMC May 20, 2019 40 /45

An example of interpretation
Set Q(q;) = i.

X qo ¥y q1 X q X q1

has denotation

([(07 qO)? (17 ql)v (1’ ql)]v [(17 ql)]? ql)

(corresponding to the type [ogo A U1 g1 — Ly g1 — q1)
May 20, 2019

41/45

Model-checking and infinitary semantics

Inductive-coinductive fixpoint operator: composes denotations w.r.t. the
parity condition.

Theorem
An APT A has a winning run from qqo over (G) if and only if

qo € [M9G)]a

where \(G) is a Y -term corresponding to G.

Conjecture
An APT A has a winning run from qqo over (G) if and only if

do € [MG)*] o [67]

where \(G)* is a Church encoding of a \Y -term corresponding to G.

Charles Grellois (AMU) Intro to HOMC May 20, 2019 42 /45

Finitary semantics

In ScottL, we define J, A and Y similarly (using downward-closures).
Scottl, is a model of the AY-calculus.

Theorem
An APT A has a winning run from qqo over (G) if and only if

g0 € [MI)]-

Corollary

The local higher-order model-checking problem is decidable (and is
n-EXPTIME complete).

Theorem

The selection problem is decidable.

Charles Grellois (AMU) Intro to HOMC May 20, 2019 43 /45

Perspectives

A purely coinductive proof of the soundness-and-completeness theorem

Accommodating the modal approach to other classes of automata

Understanding the infinitary semantics

Logical aspects: colored tensorial logic, fixpoints. ..

@ Game semantics interpretations?

Is the complexity related to light linear logics?

Extensional collapse between the two colored models?

Charles Grellois (AMU) Intro to HOMC May 20, 2019 44 /45

