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Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model M of a program

Specify a property ϕ in an appropriate logic

Make them interact: the result is whether

M � ϕ

When the model is a word, a tree. . . of actions: translate ϕ to an
equivalent automaton:

ϕ 7→ Aϕ
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Model-checking higher-order programs

For higher-order programs with recursion:

M is a higher-order tree:
a tree produced by a higher-order recursion scheme (HORS)

over which we run

an alternating parity tree automaton (APT) Aϕ

corresponding to a

monadic second-order logic (MSO) formula ϕ.
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Higher-order recursion schemes
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

A HORS is a kind of deterministic higher-order grammar.

Rewrite rules have (higher-order) parameters.

“Everything” is simply-typed.

Rewriting produces a tree 〈G〉.

Charles Grellois (PPS & LIAFA) Semantic methods in HOMC June 18, 2015 5 / 34



Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

Rewriting starts from the start symbol S:

S →G
L

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

L

Nil

→G

if

L

data

Nil

Nil

Charles Grellois (PPS & LIAFA) Semantic methods in HOMC June 18, 2015 5 / 34



Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )
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data
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

〈G〉 is an infinite
non-regular tree.

It is our model M.

if

if

if

...data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

HORS can alternatively be seen as simply-typed λ-terms with

free variables of order at most 1 (= tree constructors)

and

simply-typed recursion operators Yσ : (σ ⇒ σ)⇒ σ.

Here : G ! (Yo⇒o (λL.λx .if x (L (data x)))) Nil
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Game semantics and HORS

{
S = L Nil

L = λx . if x (L (data x))

Graph representation of
the Y combinator.

@

Nilλx

if

@

data

x

x
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Game semantics and HORS

{
S = L Nil

L = λx . if x (L (data x))

Unfolding as a regular
grammar produces an
infinite term.

@

Nilλx1

if

@

data

x1

λx2

if

@

data

x2

...

x2

x1
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Game semantics and HORS

Ong 2006:

Notion of traversal:
trace of the head
reduction along a path.

Path-traversal
correspondence.

@

Nilλx1

if

@

data

x1

λx2

if

@

data

x2

...

x2

x1
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Game semantics and HORS

if

if

if

...data

data

Nil

data

Nil

Nil

vs.

@

Nilλx1

if

@

data

x1

λx2

if

@

data

x2

...

x2

x1
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Game semantics and HORS
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Game semantics and HORS

if

if

if
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Traversals: general shape

...

@

· · ·λψ̄

...

ψj

· · ·λφ̄

...

φi

λ· · ·λ· · ·λ

j

0 i
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Alternating parity tree automata
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Alternating parity tree automata

We will use this semantic understanding of HORS to analyze them
w.r.t. a MSO formula.

For a MSO formula ϕ,

〈G〉 � ϕ

iff an equivalent APT Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

This infinite process produces a run-tree of Aϕ over 〈G〉.

It is an infinite, unranked tree.
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Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.

Charles Grellois (PPS & LIAFA) Semantic methods in HOMC June 18, 2015 11 / 34



Alternating parity tree automata

Each state of an APT receives a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � φ
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Traversals and APT
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The traversal-simulating APT

if

if

if

...data

data

Nil

data

Nil

Nil

vs.

@

Nilλx1

if

@

data

x1

λx2

if

@

data

x2

...

x2

x1

Necessity to simulate jumps, using non-determinism (heavily).

On Application nodes: guess of some environment (including colors).
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The traversal-simulating APT

@

· · ·λψ̄

...

ψj

· · ·λφ̄

...

φi

λ· · ·λ· · ·λ

j

0 i

Ong relates the runs of this APT with the ones of the original APT
using the path-traversal correspondence.

Huge APT, but over a finite graph −→ decidability.
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Intersection types and alternation

Charles Grellois (PPS & LIAFA) Semantic methods in HOMC June 18, 2015 16 / 34



Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ ⇒ (q0 ∧ q1)⇒ q0

refining the simple typing

if : o ⇒ o ⇒ o
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Alternating tree automata and intersection types
Recall the effect of

δ(q0, if) = (2, q0) ∧ (2, q1)

during an execution of A:

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Charles Grellois (PPS & LIAFA) Semantic methods in HOMC June 18, 2015 18 / 34



Alternating tree automata and intersection types

In a derivation typing if T1 T2 :

δ ∅ ` if : ∅ ⇒ (q0 ∧ q1)⇒ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)⇒ q0

...
Γ1 ` T2 : q0

...
Γ2 ` T2 : q1

App
Γ1, Γ2 ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi)

∅ ` G : q0 iff the ATA Aϕ has a run-tree over 〈G〉.

A step towards decidability. . . but what about parity ?
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Alternating parity tree automata and intersection types

@

· · ·λψ̄

...

ψj

· · ·λφ̄

...

φi

λ· · ·λ· · ·λ

j

0 i

Kobayashi-Ong (2009): encode the traversal-simulating APT as an
intersection type system.

Idempotency + finite graph −→ decidability.
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Intersection types and linear logic
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Intersection types and linear logic

A⇒ B = !A( B

A program of type A⇒ B

duplicates or drops elements of A

and then

uses linearly (= once) each copy

Just as intersection types and APT.
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Intersection types and linear logic

A⇒ B = !A( B

Two interpretations of the exponential modality:

Qualitative models
(Scott semantics)

!A = Pfin(A)

[[o ⇒ o]] = Pfin(Q)× Q

{q0, q0, q1} = {q0, q1}

Order closure

Quantitative models
(Relational semantics)

!A = Mfin(A)

[[o ⇒ o]] = Mfin(Q)× Q

[q0, q0, q1] 6= [q0, q1]

Unbounded multiplicities
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Intersection types and linear logic

Models of linear logic and intersection types (refining simple types):

Rel

Ehrhard

��

Rel!oooo

��

Bucciareli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard , G−M

��

oo

Scott Scott!
oooo

Terui
// Idempotent typesoo

Fundamental idea: derivations of the intersection type systems compute
denotations in the associated model.

(see also G-Melliès, ITRS 2014)
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Intersection types and linear logic

Models of linear logic and intersection types (refining simple types):

Rel

Ehrhard

��

Rel!oooo

��

Bucciareli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard , G−M

��

oo

Scott Scott!
oooo

Terui
// Idempotent typesoo

[q0, q0, q1]( q0_

��

� // q0 ∧ q0 ∧ q1 → q0_

��
{q0, q1}( q0

� // q0 ∧ q1 → q0
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Intersection types and linear logic

Models of linear logic and intersection types (refining simple types):

Rel

Ehrhard

��

Rel!oooo

��

Bucciareli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard , G−M

��

oo

Scott Scott!
oooo

Terui
// Idempotent typesoo

Important remark: in order to connect idempotent types with a
denotational model (→ invariance modulo βη), one needs subtyping.

Subtyping appears naturally in the Scott model, as the order closure
condition.

In the relational semantics/non-idempotent types: no such requirement.
But unbouded multiplicities. . .
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Four theorems: inductive version

We obtain a theorem for every corner of our “equivalence square”:

Theorem

In the relational (resp. Scott) semantics,

q0 ∈ [[G]] iff the ATA Aφ has a finite run-tree over 〈G〉.

Theorem

With non-idempotent (resp. idempotent with subtyping) intersection
types,

` G : q0 iff the ATA Aφ has a finite run-tree over 〈G〉.
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An infinitary model of linear logic

Restrictions to finiteness:

for Rel and non-idempotent types: lack of a countable multiplicity ω.
Recall that tree constructors are free variables. . .

for idempotent types: just need to allow infinite (or circular)
derivations.

for Scott: interpret Y as the gfp.

In Rel , we introduce a new exponential A 7→  A s.t.

[[ A]] = Mcount([[A]])

Mcount builds finite-or-countable multisets.

(G-Melliès, FoSSaCS 2015)
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An infinitary model of linear logic

This defines an infinitary model of linear logic, which corresponds to

non-idempotent intersection types with countable multiplicities

and derivations of countable depth.

It admits a coinductive fixpoint, which we use to interpret Y .

The four theorems generalize to all ATA (→ infinite runs).

And the parity condition ?
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Alternating parity tree automata

Kobayashi and Ong’s type system has a quite complex handling of colors.

We reformulate it in a very simple way:

δ(q0, if) = (2, q0) ∧ (2, q1)

now corresponds to

if : ∅ ⇒
(
�Ω(q0) q0 ∧�Ω(q1) q1

)
⇒ q0

Application computes the “local” maximum of colors, and the fixpoint
deals with the acceptance condition.

In this reformulation, the colors behave as a family of modalities.
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The coloring comonad

Since coloring is a modality, it defines a comonad in the semantics:

� A = Col × A

which can be composed with  , so that

if : ∅ ⇒
(
�Ω(q0) q0 ∧�Ω(q1) q1

)
⇒ q0

corresponds to

[ ]( [(Ω(q0), q0), (Ω(q1), q1)]( q0 ∈ [[if]]

in the semantics (relational in this example, but it also works for Scott)
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An inductive-coinductive fixpoint operator

We define a fixpoint operator:

On typing derivations: rephrasal of the parity condition over
derivations −→ winning derivations.

On denotations: it composes inductively or coinductively elements of
the semantics, according to the current color.

Work in progress: semantic definition of Y using directly the lfp and gfp
(strongly related to the expression of the solution of parity games with lfp
and gfp).
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The final picture

Rel + � + Y

��

// Non-idempotent types + � + Y

��

oo

Scott + � + Y // Idempotent types + � + Yoo

Open question: are the dotted lines an extensional collapse again?
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Four theorems: full version

We obtain a theorem for every corner of our “colored equivalence square”:

Theorem (G-Melliès, CSL 2015)

In the colored relational (resp. colored Scott) semantics,

q0 ∈ [[G]] iff the APT Aφ has a winning run-tree over 〈G〉.

Theorem (G-Melliès, MFCS 2015)

With colored non-idempotent (resp. colored idempotent with subtyping)
intersection types, there is a winning derivation of

` G : q0 iff the APT Aφ has a winning run-tree over 〈G〉.
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The selection problem

In the Scott/idempotent case, finiteness ⇒ decidability of the higher-order
model-checking problem.

Even better: the selection problem is decidable.

If Aφ accepts 〈G〉, we can compute effectively a new scheme G′ such that
〈G′〉 is a winning run-tree of Aφ over 〈G〉.

In other words: there is a higher-order winning run-tree.

(the key: annotate the rules with their denotation/their types).
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The selection problem{
S = L Nil

L = λx . if x (L (data x))

becomes e.g.

Sq0 = L{q0, q1}(q0 Nilq0 Nilq1

L{q0, q1}(q0 = λx{q0, q1}.

if∅({q0, q1}(q0

L{q0}(q1

data{q0,q1}(q0

xq1xq0

L{q1}(q0

data{q0}(q1

xq0

L{q0}(q1 = · · ·
L{q1}(q0 = · · ·
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Other approaches

Ong 2006 (game semantics)

Hague-Murawski-Ong-Serre 2008 (game semantics + collapsible
higher-order pushdown automata)

Kobayashi-Ong 2009 (intersection types)

Salvati-Walukiewicz 2011 (interpretation with Krivine machines)

Carayol-Serre 2012 (collapsible higher-order pushdown automata)

Tsukada-Ong 2014 (game semantics)

Salvati-Walukiewicz 2015 (interpretation in finite models)

Grellois-Melliès 2015

Thank you for your attention!
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