
Linearity in Higher-Order Recursion Schemes

Pierre Clairambault, Charles Grellois and Andrzej Murawski

Aix-Marseille Université

Séminaire PPS
Dec 7, 2017

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 1 / 50

Modeling functional programs

using higher-order

recursion schemes

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 2 / 50

Model-checking

Approximate the program −→ build a model M.

Then, formulate a logical specification ϕ over the model.

Aim: design a program which checks whether

M � ϕ.

That is, whether the model M meets the specification ϕ.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 3 / 50

An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data() :: x

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 4 / 50

An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data()::x

A tree model:

if

if

if
...data

data

Nil

data

Nil

Nil

We abstracted conditionals and datatypes.
The approximation contains a non-terminating branch.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 4 / 50

Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

is not regular: it is not the unfolding of a finite graph as

if

Nil if

data

Nil

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 5 / 50

Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

but it is represented by a higher-order recursion scheme (HORS).

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 5 / 50

Higher-order recursion schemes

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data() :: x

is abstracted as

G =

{
S = L Nil

L x = if x (L (data x))

which represents the higher-order tree of actions

if

if
...data

Nil

Nil

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 6 / 50

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

Rewriting starts from the start symbol S:

S →G
L

Nil

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 7 / 50

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

L

Nil

→G

if

L

data

Nil

Nil

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 7 / 50

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 7 / 50

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

〈G〉 =

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 7 / 50

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 7 / 50

Alternating parity tree automata

Checking specifications over trees

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 8 / 50

Monadic second order logic

MSO is a common logic in verification, allowing to express properties as:

“ all executions halt ”

“ a given operation is executed infinitely often in some execution ”

“ every time data is added to a buffer, it is eventually processed ”

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 9 / 50

Alternating parity tree automata

Checking whether a formula holds can be performed using an automaton.

For an MSO formula ϕ, there exists an equivalent APT Aϕ s.t.

〈G〉 � ϕ iff Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 10 / 50

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 11 / 50

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 11 / 50

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 12 / 50

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � ϕ.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 12 / 50

The higher-order model-checking problem

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 13 / 50

The (local) HOMC problem

Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = “ there is an infinite execution ”

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true.
Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 14 / 50

The (local) HOMC problem

Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = “ there is an infinite execution ”

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true.
Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 14 / 50

Our line of work

This problem is decidable (Ong 2006), and its complexity is n-EXPTIME
where n is the order of the HORS of interest.

But there are practical algorithms that work quite well!

Our contributions:

Explain why it works: in fact, complexity depends on the linear order
of the HORS

For this, we introduce a linear-nonlinear version of HORS and of
APT. This framework allows us to give simpler proofs of existing
results of HOMC, and allows to unify these existing approaches.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 15 / 50

Intersection types and alternation

A first connection with linear logic

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 16 / 50

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ → (q0 ∧ q1)→ q0

refining the simple typing

if : o → o → o

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 17 / 50

Alternating tree automata and intersection types

In a derivation typing the tree if T1 T2 :

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
∅ ` T2 : q0

...
∅ ` T2 : q1

App
∅ ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi 2009)

` G : q0 iff the ATA Aϕ has a run-tree over 〈G〉.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 18 / 50

A closer look at the Application rule

In the intersection type system:

∆ ` t : (θ1 ∧ · · · ∧ θn)→ θ ∆i ` u : θi
App

∆ , ∆1 , . . . , ∆n ` t u : θ

This rule could be decomposed as:

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 19 / 50

A closer look at the Application rule

In the intersection type system:

∆ ` t : (θ1 ∧ · · · ∧ θn)→ θ ∆i ` u : θi
App

∆ , ∆1 , . . . , ∆n ` t u : θ

This rule could be decomposed as:

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 19 / 50

A closer look at the Application rule

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Linear decomposition of the intuitionistic arrow:

A⇒ B = !A(B

Two steps: duplication / erasure, then linear use.

Right
∧

corresponds to the Promotion rule of indexed linear logic.
(see G.-Melliès, ITRS 2014)

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 20 / 50

Adding parity conditions
to the type system

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 21 / 50

An example of colored intersection type

Set Ω(q0) = 0 and Ω(q1) = 1.

λx

λy

a q1

a q1

x q1x q1

a q0

y q1x q0

has now type
�0 q0 ∧�1 q1 → �1 q1 → q1

Note the color 0 on q0. . .

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 22 / 50

A type-system for verification

We devise a type system capturing all MSO:

Theorem (G.-Melliès 2014, from Kobayashi-Ong 2009)

S : q0 ` S : q0 admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over 〈G〉.

By considering idempotent types, the problem is decidable and
n-EXPTIME complete where n is the order of the HORS.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 23 / 50

Why n-EXPTIME?

The types refining o are states. There are |Q| of them.

The types refining o ⇒ o are of the shape
∧

i∈I 2ci qi → q′. There

are |Q| × 2|Col |×|Q| of them.

The types refining (o ⇒ o)⇒ o involve one more powerset
construction, and are doubly exponential in size, and so on.

There is a semantic counterpart to this result, in the Scott model of linear
logic: every exponential one crosses makes the interpretation of the type
exponentially bigger.

Our idea: sometimes, the exponential is not used. Thus, it is not useful to
make the search space exponentially bigger! Let’s use linear typing to
refine all that.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 24 / 50

Linear HORS

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 25 / 50

Linear-Nonlinear Kinds

Kinds are generated by either of ϕ or $ in the following grammar.

ϕ,ψ, . . . ::= o | $(ψ | ϕ→ ψ

$, κ, ι, . . . ::= ϕ | &i∈Iϕi

(Kind is a word that means “simple type”, to distinguish from
“intersection type”)

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 26 / 50

Linear Order

The linear order ò(κ) of a kind κ is defined inductively:

ò(o) = 0
ò($(ϕ) = max(ò($), ò(ϕ))
ò(ϕ→ ψ) = max(ò(ϕ) + 1, ò(ψ))
ò(&i∈Iϕi) = maxi∈I ò(ϕi)

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 27 / 50

Applicative Terms

A term t ∈ KTΓ|∆(κ) is called applicative if one can derive
Γ | ∆ `ap t :: κ using:

Γ, x :: ϕ | ∆ `ap x :: ϕ Γ | ∆, x :: &i∈Iϕi `ap πi x :: ϕi

Γ | ∆ `ap ti :: ϕi (i ∈ I)

Γ | ∆ `ap 〈ti | i ∈ I 〉 :: &i∈Iϕi

Γ | ∆1 `ap t :: $(ϕ Γ | ∆2 `ap u :: $

Γ | ∆1,∆2 `ap t u :: ϕ

Γ | ∆ `ap t :: ϕ1 → ϕ2 Γ | `ap u :: ϕ1

Γ | ∆ `ap t u :: ϕ2

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 28 / 50

Linear HORS

An applicative term is necessarily .βηδ-normal.

It does not contain any fixpoints or abstractions, and only consists of
pairing and applying (projections of) variables from the contexts.

We write AppΓ|∆(κ) for the set of applicative terms t such that
Γ | ∆ `ap t :: κ.

A linear HORS will associate to every non-terminal a term of the form

t = l1x1. . . . lnxn. t
′ ∈ KTΓ| (ϕ)

where t ′ ∈ AppΓ,Vλ|V`(o), li ∈ {λ, `} and Vl = {xi | li = l}.

We call such terms function definitions of kind ϕ in context Γ, and
write DefΓ(ϕ) for the corresponding set.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 29 / 50

Linear HORS

A linear HORS (LHORS) is a 4-tuple G = 〈Σ,N ,R,S〉 where:

Σ is a tree signature,

N is a finite set of kinded non-terminals, with a functional kind; we
use upper-case letters F ,G ,H, . . . to range over them. We denote
N (F) the functional kind of F and write F :: N (F).

S ∈ N is a distinguished start symbol of kind o,

R is a function associating to each F in N a kinded term
R(F) ∈ DefΣ,N (N (F)).

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 30 / 50

Linear Order of a Linear HORS

The linear order (resp. linear depth) of a LHORS G = 〈Σ,N ,R,S〉,
written ò(G) (resp. d̀(G)), is the maximal linear order (resp. linear depth)
of the kinds of its non-terminals in N .

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 31 / 50

Linear HORS: Example

Σ = {b :: o & o (o, c :: o (o, d :: o (o, e :: o}

N = {S :: o,F :: (o (o)(o,G :: o (o,H :: (o (o)(o (o}

R(S) = F G :: o
R(F) = `f o(o . b 〈f e,F (H f)〉 :: (o (o)(o
R(G) = `xo . c (d x) :: o (o
R(H) = `f o(o . `xo . c (f (d x)) :: (o (o)(o (o

Linear order: 0

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 32 / 50

Value Tree of a Linear HORS

Tree contexts:

T [−] ::= [−] | a t1 . . . ti−1 T [−] ti+1 . . . tn | 〈t1, . . . , ti−1,T [−], ti+1, . . . , tn〉

where a is a terminal symbol in Σ. We give a reduction on applicative
terms t ∈ AppΣ,N| (o) by:

T [F t1 . . . tn] � T [t[ti/xi]]
T [(πj 〈ti | i ∈ I 〉) u1 . . . up] � T [tj u1 . . . up]

(where R(F) = l1x1. . . . lnxn. t)

Definition

A linear HORS G is productive when the limit of any potentially infinite
sequence of reductions S � R(S) � t2 � · · · which is fair, i.e. which
eventually rewrites everything that can be rewritten, exists. This limit is
then called the value tree 〈G〉 of G.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 33 / 50

Value Tree of a Linear HORS
We represent tuples as branching. Tree generated by the previous example:

b

c b

d c2 b

e d2 c3 b

e d3 c4 . . .

e . . .

Generated by a linear HORS of linear order 0.
With usual HORS, order 2 is necessary!

HORS and linear HORS generate the same trees, but with this difference
on (linear) order.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 34 / 50

An Equivalent Linear-Nonlinear λY -calculus

There is a linear-nonlinear extension of the λY -calculus which is
equivalent to linear-nonlinear HORS: there are mutual translations
preserving the linear order.

These translations are much simpler than the ones of Salvati and
Walukiewicz for the traditional case (mainly because we use products).

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 35 / 50

Linear-Nonlinear APT

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 36 / 50

Linear-Nonlinear APT

Recall the correspondence between APT transitions and intersection types.

We will build on it, and consider from now on that an APT is a way to give
intersection types to tree constructors. Now we use more refined types:

σ ::= q | P (σ | E (σ | A→ σ (q ∈ Q)
A ::=

∧
i∈I 2ci σi (ci ∈ Col)

P ::= 〈 ∅, . . . , ∅,2c σ, ∅, . . . , ∅ 〉 (c ∈ Col)
E ::= 〈 ∅, . . . , ∅, . . . , ∅ 〉

Idea: a linear-nonlinear APT (LNAPTA) will explore at most one of the
components of a product.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 37 / 50

Refinement Relation

The refinement relation between intersection types and kinds is defined
by the following rules.

q ∈ Q

q :: o

P :: $ σ :: ϕ

P (σ :: $(ϕ

E :: $ σ :: ϕ

E (σ :: $(ϕ

A :: ϕ σ :: ϕ′

A→ σ :: ϕ→ ϕ′

∀i ∈ I , σi :: ϕ∧
i∈I

2ci σi :: ϕ

σ :: ϕj〈
∅, . . . , ∅, 2c σ︸ ︷︷ ︸

position j

, ∅, . . . , ∅

〉
:: &i∈Iϕi

E :: $

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 38 / 50

LNAPTA

A linear-nonlinear APTA (LNAPTA) is a tuple 〈Σ, Q, δ, q0〉, where

Σ is a tree signature,

Q is a finite set of states,

q0 ∈ Q is the inital state,

and δ is a map from Σ to sets of intersection types over Q and Col
such that σ :: Σ(a) for any a ∈ Σ and σ ∈ δ(a).

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 39 / 50

LNAPTA: Example

Σ = {b :: o & o (o, c :: o (o, d :: o (o, e :: o}

Check that, on any branch, after a c is encountered, we never encounter b
again and we eventually encounter e (call this property P)?

We can only check ¬P over this signature, by A = 〈Σ, {q0, q1}, δ, q0〉,
where:

δ(b) = {〈21q0, ∅〉(q0, 〈∅,21q0〉(q0, 〈∅, ∅〉(q1}
δ(c) = {〈22q1〉(q0, 〈22q1〉(q1}
δ(d) = {〈21q0〉(q0, 〈22q1〉(q1}

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 40 / 50

LNAPTA Run-Tree

We keep informal here. Idea:

Usual alternating APT on inputs that are nonlinearly typed (i.e.
under an exponential)

On inputs typed with &i∈Iϕi , choose either not to explore anything,
or to explore a single direction.

The formal definition is by delinearization (idea: remove all the linear
information to get back to the usual case).

As such, LNAPTA allow to check for MSO properties over nonlinear
signatures, for disjunctive properties over linear signatures,. . . and we do
not know a logical characterization of the intermediate classes.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 41 / 50

Typing and Model-Checking

We give an intersection type system in which we type the rules of HORS.

σ ∈ δ(a)

| `A a : σ :: Σ(a)

x /∈ Σ

x :
∧
{?}

2ε σ :: ϕ | `A x : σ :: ϕ

x /∈ Σ ∪N
| x : 〈 ∅, . . . , ∅,2ε σ, ∅, . . . , ∅ 〉 :: &i∈Iϕi `A πi x : σ :: ϕi

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 42 / 50

Typing and Model-Checking

Γ, x :
∧
i∈I

2ci σi :: ϕ1 | ∆ `A t : τ :: ϕ2 I ⊆ J

Γ | ∆ `A λx . t :
∧
j∈J

2cj σj → τ :: ϕ1 → ϕ2

Γ | ∆ `A t : τ :: ϕ2 x /∈ dom(()Γ,∆)

Γ | ∆ `A λx . t :
∧
∅ → τ :: ϕ1 → ϕ2

Γ | ∆, x : P :: $ `A t : σ :: ϕ

Γ | ∆ `A `x . t : P (σ :: $(ϕ

Γ | ∆ `A t : σ :: ϕ x /∈ dom(()Γ,∆)

Γ | ∆ `A `x . t : E (σ :: $(ϕ

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 43 / 50

Typing and Model-Checking

Γ1 | ∆1 `A t : 〈 ∅, . . . , ∅,2c σ, ∅, . . . , ∅ 〉(τ :: $(ϕ
Γ2 | ∆2 `A uj : σ :: $

Γ1 ∧2c Γ2 | ∆1,2c ∆2 `A t 〈 u1, . . . , uj , . . . , un〉 : τ :: ϕ

Γ | ∆ `A t : E (σ :: $(ϕ

Γ | ∆ `A t 〈 u1, . . . , uj , . . . , un〉 : σ :: ϕ

Γ | ∆ `A uj : σ :: ϕ j ∈ I

Γ | ∆ `A πj 〈 ui | i ∈ I 〉 : σ :: ϕ

Γ0 | ∆ `A t :
∧
i∈I

2ci σi → τ :: ϕ1 → ϕ2

∀i ∈ I , Γi | `A u : σi :: ϕ1

Γ0 ∧2c1Γ1 ∧ · · · ∧2cnΓn | ∆ `A t u : τ :: ϕ2

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 44 / 50

Typing and Model-Checking

A parity game accounts for the recursive behaviour.
The idea is that two players, Adam (who owns the vertices from V∀) and
Eve (who owns those from V∃), build incrementally a typing as follows:

Eve starts from (S , q0, ε), and must answer with a context Γ such
that Γ | `A R(S) : q0 :: o. Γ contains typings for the nonterminals
introduced when rewriting S to R(S).

If Γ is empty, Eve wins. Otherwise, Adam picks a typed nonterminal
F : 2cσ :: N (F) ∈ Γ and outputs the colour c .

Then Eve provides a context Γ′ such that
Γ′ | `A R(F) : σ :: N (F), and so on.

The interaction stops if Eve can answer with the empty context (she
wins), if she cannot answer (she loses) or if the play is infinite (Eve wins iff
the parity condition is satisfied).

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 45 / 50

Typing and Model-Checking

Theorem (Soundness and Completeness)

Let G be a linear HORS and A be a LNAPTA. Eve has a winning strategy
in the typing game Typ(G,A) if and only if there is an accepting run-tree
of A over the tree 〈G〉 produced by G.

Theorem

Assume n ≥ 1. The time complexity of checking whether a LNAPTA
A = 〈Σ,Q, δ, q0〉 accepts the value tree of a D-deep LHORS G of linear
order n is expn(O(poly(|Q||G|))). In particular, the problem is
n-EXPTIME complete.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 46 / 50

Three Applications

Recursive schemes over finite data domains (RSFD) extend HORS with a
finite data domain over which pattern-matching can be done.

A direct and elaborate proof exists (Kobayashi et al. 2010) that their MSO
model-checking is n-EXPTIME complete. The point is to embed RSFD in
usual HORS, but then the complexity becomes too high...

With our framework: a very simple translation to linear-nonlinear
λY -calculus, mapping a HORS of order n to a term of linear order n,
allows to obtain the result!

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 47 / 50

Three Applications

Higher-Order Recursion Schemes with Cases (Neatherway et al. 2012) are
similar to RSFD, but a bit more general.

Again, by a simple translation, we obtain the (previously known) result
that the MSO model-checking problem is n-EXPTIME complete. And we
are not impacted by increases of complexity coming from the translation.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 48 / 50

Three Applications

What about CBV programs? A 2014 analysis by Tsukada and Kobayashi
showed that reachability is n-EXPTIME complete for depth n CBV
programs (with recursion and non-determinism).

They do not use a CPS to encode into usual HORS, because it would have
make the complexity explode.

We use linear CPS to encode the problem into linear-nonlinear
λY -calculus and obtain again the n-EXPTIME completeness result directly
from our analysis of HOMC using linearity.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 49 / 50

Conclusion

We refine usual HOMC by introducing linear HORS, linear-nonlinear
λY -calculus and LNAPTA

We show that the complexity of HOMC actually comes from the
notion of linear order

We make three elaborate proofs considerably simpler thanks to the
linear framework.

Charles Grellois (Aix-Marseille Université) Linearity in HORS Dec 7, 2017 50 / 50

