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Functional programs,

Higher-order models
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Imperative vs. functional programs

Imperative programs: built on finite state machines (like Turing
machines).

Notion of state, global memory.

Functional programs: built on functions that are composed together
(like in Lambda-calculus).

No state (except in impure languages), higher-order: functions can
manipulate functions.

(recall that Turing machines and λ-terms are equivalent in expressive
power)
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Example: imperative factorial

int fact(int n) {

int res = 1;

for i from 1 to n do {

res = res * i;

}

}

return res;

}

Typical way of doing: using a variable (change the state).
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Example: functional factorial

In OCaml:

let rec factorial n =

if n <= 1 then

1

else

factorial (n-1) * n;;

Typical way of doing: using a recursive function (don’t change the state).

In practice, forbidding global variables reduces considerably the number of
bugs, especially in a parallel setting (cf. Erlang).
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Advantages of functional programs

Very mathematical: calculus of functions.

. . . and thus very much studied from a mathematical point of view.
This notably leads to strong typing, a marvellous feature.

Much less error-prone: no manipulation of global state.

More and more used, from Haskell and Caml to Scala, Javascript and even
Java 8 nowadays.

Also emerging for probabilistic programming.

Price to pay: analysis of higher-order constructs.
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Advantages of functional programs

Price to pay: analysis of higher-order constructs.

Example of higher-order function: map.

map ϕ [0, 1, 2] returns [ϕ(0), ϕ(1), ϕ(2)].

Higher-order: map is a function taking a function ϕ as input.
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Advantages of functional programs

Price to pay: analysis of higher-order constructs.

Function calls + recursivity = deal with stacks of calls → approaches
for verification using automata with stacks of stacks of stacks. . . or
with Krivine machines that also have a stack of calls

Based on λ-calculus with recursion and types: we will use its
semantics to do verification

That’s the first goal of the talk.

(but that’s only an approach among many others)

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 7 / 68



Probabilistic functional programs

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography, machine
learning, AI. . .

What if we add probabilistic constructs?

In this talk: M ⊕p N →v

{
Mp, N1−p

}
Allows to simulate some random distributions, not all. In future work: add
fully the two roots of probabilistic programming, drawing values at random
from more probability distributions (typically on the reals), and
conditioning which allows among others to do machine learning.
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Probabilistic functional programs

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography, machine
learning, AI. . .

What if we add probabilistic constructs?

In this talk: M ⊕p N →v

{
Mp, N1−p

}
Second goal of the talk. Go towards verification of probabilistic functional
programs. We give an incomplete method for termination-checking and
hints towards verification of more properties.
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Using higher-order functions

Bending a coin in the probabilistic functional language Church:

var makeCoin = function(weight) {

return function() {

flip(weight) ? ’h’ : ’t’

}

}

var bend = function(coin) {

return function() {

(coin() == ’h’) ? makeCoin(0.7)() : makeCoin(0.1)()

}

}

var fairCoin = makeCoin(0.5)

var bentCoin = bend(fairCoin)

viz(repeat(100,bentCoin))
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Roadmap

1 Semantics of linear logic for verification of deterministic functional
programs

2 A type system for termination of probabilistic functional programs

3 Towards verification for the probabilistic case?
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Semantics of linear logic and higher-order model-checking

Linear logic: a logical system with an emphasis on the notion of resource.

Model-checking: a key technique in verification — where we want to
determine automatically whether a program satisfies a specification.

My thesis: linear logic and its semantics can be enriched to obtain new
and cleaner proofs of decidability in higher-order model-checking.
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What is model-checking?
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The halting problem

A natural question: does a program always terminate?

Undecidable problem (Turing 1936): a machine can not always determine
the answer.

What if we use approximations?
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Model-checking

Approximate the program −→ build a model M.

Then, formulate a logical specification ϕ over the model.

Aim: design a program which checks whether

M � ϕ.

That is, whether the model M meets the specification ϕ.
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An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data() :: x
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An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data()::x

A tree model:

if

if

if
...data

data

Nil

data

Nil

Nil

We abstracted conditionals and datatypes.
The approximation contains a non-terminating branch.
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Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

is not regular: it is not the unfolding of a finite graph as

if

Nil if

data

Nil
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Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

but it is represented by a higher-order recursion scheme (HORS).

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 16 / 68



Modeling functional programs

using higher-order

recursion schemes
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

Rewriting starts from the start symbol S:

S →G
L

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

L

Nil

→G

if

L

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

〈G〉 =

if

if

if

...data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

They are also equi-expressive to pushdown automata with stacks of stacks
of stacks. . . and a collapse operation.
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Alternating parity tree automata

Checking specifications over trees
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Monadic second order logic

MSO is a common logic in verification, allowing to express properties as:

“ all executions halt ”

“ a given operation is executed infinitely often in some execution ”

“ every time data is added to a buffer, it is eventually processed ”
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Alternating parity tree automata

Checking whether a formula holds can be performed using an automaton.

For an MSO formula ϕ, there exists an equivalent APT Aϕ s.t.

〈G〉 � ϕ iff Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil
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Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5
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Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � ϕ.
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The higher-order model-checking
problems
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The (local) HOMC problem

Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = “ there is an infinite execution ”

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true.
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The global HOMC problem

Input: HORS G, formula ϕ.

Output: a HORS G• producing a marking of 〈G〉.

Example: ϕ = “ there is an infinite execution ”

Output: G• of value tree:

if•

if•

if•

...data

data

Nil

data

Nil

Nil
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The selection problem

Input: HORS G, APT A, state q ∈ Q.

Output: false if there is no winning run of A over 〈G〉.
Else, a HORS Gq producing a such a winning run.

Example: ϕ = “ there is an infinite execution ”, q0 corresponding to ϕ

Output: Gq0 producing

ifq0

ifq0

ifq0

...
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Our line of work (joint with Melliès)

These three problems are decidable, with elaborate proofs (often) relying
on semantics.

Our contribution: an excavation of the semantic roots of HOMC, at the
light of linear logic, leading to refined and clarified proofs.
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Recognition by homomorphism

Where semantics comes into play
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Automata and recognition
For the usual finite automata on words: given a regular language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if. . .

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism ϕ : A∗ → M such that L = ϕ−1(K ).

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 30 / 68



Automata and recognition

The picture we want:

(after Aehlig 2006, Salvati 2009)

but with recursion and w.r.t. an APT.
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Intersection types and alternation

A first connection with linear logic
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Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ → (q0 ∧ q1)→ q0

refining the simple typing

if : o → o → o
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Alternating tree automata and intersection types

In a derivation typing the tree if T1 T2 :

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
∅ ` T2 : q0

...
∅ ` T2 : q1

App
∅ ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi 2009)

` G : q0 iff the ATA Aϕ has a run-tree over 〈G〉.
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A closer look at the Application rule

In the intersection type system:

∆ ` t : ( θ1 ∧ · · · ∧ θn)→ θ ∆i ` u : θi
App

∆ , ∆1 , . . . , ∆n ` t u : θ

This rule could be decomposed as:

∆ ` t : (
∧n

i=1 θi )→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′
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A closer look at the Application rule

∆ ` t : (
∧n

i=1 θi )→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Linear decomposition of the intuitionistic arrow:

A⇒ B = !A( B

Two steps: duplication / erasure, then linear use.

Right
∧

corresponds to the Promotion rule of indexed linear logic.
(see G.-Melliès, ITRS 2014)
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Intersection types and semantics of linear logic

A⇒ B = !A( B

Two interpretations of the exponential modality:

Qualitative models
(Scott semantics)

!A = Pfin(A)

[[o ⇒ o]] = Pfin(Q)× Q

{q0, q0, q1} = {q0, q1}

Order closure

Quantitative models
(Relational semantics)

!A = Mfin(A)

[[o ⇒ o]] = Mfin(Q)× Q

[q0, q0, q1] 6= [q0, q1]

Unbounded multiplicities
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An example of interpretation

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

In Rel , one denotation:

([q0, q1, q1], [q1], q0)

In ScottL, a set
containing the principal
type

({q0, q1}, {q1}, q0)

but also

({q0, q1, q2}, {q1}, q0)

and

({q0, q1}, {q0, q1}, q0)

and . . .
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Intersection types and semantics of linear logic

Rel!

Ehrhard

��

Bucciarelli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

Let t be a term normalizing to a tree 〈t〉 and A be an alternating
automaton.

A accepts 〈t〉 from q ⇔ q ∈ [[t]] ⇔ ∅ ` t : q :: o

Extension with recursion and parity condition?

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 39 / 68



Adding parity conditions
to the type system
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An example of colored intersection type

Set Ω(q0) = 0 and Ω(q1) = 1.

λx

λy

a q1

a q1

x q1x q1

a q0

y q1x q0

has now type
�0 q0 ∧�1 q1 → �1 q1 → q1

Note the color 0 on q0. . .
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A type-system for verification

We devise a type system capturing all MSO:

Theorem (G.-Melliès 2014, from Kobayashi-Ong 2009)

S : q0 ` S : q0 admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over 〈G〉.

We obtain decidability by considering idempotent types.

Our reformulation

shows the modal nature of � (in the sense of S4),

internalizes the parity condition,

paves the way for semantic constructions.
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Colored semantics

We extend:

Rel with countable multiplicities, coloring and an
inductive-coinductive fixpoint

ScottL with coloring and an inductive-coinductive fixpoint.

Methodology: think in the relational semantics, and adapt to the Scott
semantics using Ehrhard’s 2012 result:

the finitary model ScottL is the extensional collapse of Rel .
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Finitary semantics

In ScottL, we define �, λ and Y using downward-closures.
ScottL   is a model of the λY -calculus.

Theorem

An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)]].

Corollary

The local higher-order model-checking problem is decidable (and is
n-EXPTIME complete).

We could also obtain global model-checking and selection.

Similar model-theoretic results were obtained by Salvati and Walukiewicz
the same year.
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Probabilistic Termination

Checking a first property on probabilistic program
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Motivations

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography,
machine learning, AI. . .

Quantitative notion of termination: almost-sure termination (AST)

AST has been studied for imperative programs in the last years. . .

. . . but what about the functional probabilistic languages?

We introduce a monadic, affine sized type system sound for AST.
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Sized types: the deterministic case

Simply-typed λ-calculus is strongly normalizing (SN).

Γ, x : σ ` x : σ
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ

Γ ` M : σ → τ Γ ` N : σ
Γ ` M N : τ

where σ, τ ::= o
∣∣ σ → τ .

Forbids the looping term Ω = (λx .x x)(λx .x x).

Strong normalization: all computations terminate.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 47 / 68



Sized types: the deterministic case

Simply-typed λ-calculus is strongly normalizing (SN).

No longer true with the letrec construction. . .

Sized types: a decidable extension of the simple type system ensuring SN
for λ-terms with letrec.

See notably:

Hughes-Pareto-Sabry 1996, Proving the correctness of reactive
systems using sized types,

Barthe-Frade-Giménez-Pinto-Uustalu 2004, Type-based termination
of recursive definitions.
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Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Idea: k successors = at most k constructors.

Nat̂i is 0,

Nat̂̂i is 0 or S 0,

. . .

Nat∞ is any natural number. Often denoted simply Nat.

The same for lists,. . .
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Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

“To define the action of f on size n + 1,
we only call recursively f on size at most n”
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Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

Typable =⇒ SN. Proof using reducibility candidates.

Decidable type inference.
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Sized types: example in the deterministic case

From Barthe et al. (op. cit.):

The case rule ensures that the size of x ′ is lesser than the one of x .
Size decreases during recursive calls ⇒ SN.
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A probabilistic λ-calculus

M, N, . . . ::= V
∣∣ V V

∣∣ let x = M in N
∣∣ M ⊕p N∣∣ case V of { S→W | 0→ Z }

V , W , Z , . . . ::= x
∣∣ 0

∣∣ S V
∣∣ λx .M ∣∣ letrec f = V

Formulation equivalent to λ-calculus with ⊕p, but constrained for
technical reasons (A-normal form)

Restriction to base type Nat for simplicity, but can be extended to
general inductive datatypes (as in sized types)
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A probabilistic λ-calculus: operational semantics

let x = V in M →v

{
(M[x/V ])1

}

(λx .M) V →v

{
(M[x/V ])1

}

(letrec f = V )
(
c
−→
W
)
→v

{(
V [f / (letrec f = V )]

(
c
−→
W
))1

}
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A probabilistic λ-calculus: operational semantics

case S V of {S→W | 0→ Z } →v

{
(W V )1

}

case 0 of { S→W | 0→ Z } →v

{
(Z )1

}

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 52 / 68



A probabilistic λ-calculus: operational semantics

M ⊕p N →v

{
Mp, N1−p

}
M →v

{
Lpi

i

∣∣ i ∈ I
}

let x = M in N →v

{
(let x = Li in N)pi

∣∣ i ∈ I
}
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A probabilistic λ-calculus: operational semantics

D
VD
=

{
M

pj

j

∣∣ j ∈ J
}

+ DV ∀j ∈ J, Mj →v Ej

D →v

(∑
j∈J pj · Ej

)
+ DV

For D a distribution of terms:

[[ D ]] = supn∈N
({

Dn

∣∣ D Vn
v Dn

})
where Vn

v is →n
v followed by projection on values.

We let [[M ]] = [[
{
M1
}

]].

M is AST iff
∑

[[M ]] = 1.
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Random walks as probabilistic terms

Biased random walk:

Mbias =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y)))
∣∣ 0→ 0

})
n
¯

Unbiased random walk:

Munb =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

})
n
¯

∑
[[Mbias ]] =

∑
[[Munb ]] = 1

Capture this in a sized type system?
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Another term

We also want to capture terms as:

Mnat =
(

letrec f = λx .x ⊕ 1
2

S (f x)
)

0

of semantics

[[Mnat ]] =
{

(0)
1
2 , (S 0)

1
4 , (S S 0)

1
8 , . . .

}
summing to 1.

Remark that this recursive function generates the geometric distribution.
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Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

Kind of product interpretation of ⊕: we can’t capture more than SN. . .
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Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

We get at best

f : Nat̂̂i → Nat∞

`

λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

}
: Nat̂i → Nat∞

and can’t use a variation of the letrec rule on that.
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Beyond SN terms, towards distribution types

We will use distribution types, built as follows:

Γ |Θ ` M : µ Γ |Ψ ` N : ν {|µ |} = {| ν |}
Choice

Γ |Θ⊕p Ψ ` M ⊕p N : µ⊕p ν

Now

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

}
: Nat̂i → Nat∞
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Designing the fixpoint rule

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

}
: Nat̂i → Nat∞

induces a random walk on N:

on n + 1, move to n with probability 1
2 , on n + 2 with probability 1

2 ,

on 0, loop.

The type system ensures that there is no recursive call from size 0.

Random walk AST (= reaches 0 with proba 1) ⇒ termination.
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Designing the fixpoint rule

{| Γ |} = Nat

i /∈ Γ and i positive in ν{
(Natsj → ν[i/sj ])

pj
∣∣ j ∈ J

}
induces an AST sized walk

Γ | f :
{

(Natsj → ν[i/sj ])
pj
∣∣ j ∈ J

}
` V : Nat̂i → ν[i/̂i]

LetRec
Γ | ∅ ` letrec f = V : Natr → ν[i/r]

Sized walk: AST is checked by an external PTIME procedure.
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Generalized random walks and the necessity of affinity

A crucial feature: our type system is affine.

Higher-order symbols occur at most once. Consider:

Mnaff = letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y) ; f (S S y))
∣∣ 0→ 0

}

The induced sized walk is AST.
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Generalized random walks and the necessity of affinity
Tree of recursive calls, starting from 1:

[1]

[2 2]

[2 3 3]

...

[2 1]

[2 2 2]

...

[2]

[3 3]

...

[1]

[2 2]

...

[0]

[0]

Leftmost edges have
probability 2

3 ;
rightmost ones 1

3 .

This random process
is not AST.

Problem:
modelisation by sized
walk only makes
sense for affine
programs.
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Key properties

A nice subject reduction property, and:

Theorem (Typing soundness)

If Γ |Θ ` M : µ, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.
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Conclusion of this part

Main features of the type system:

Affine type system with distributions of types

Sized walks induced by the letrec rule and solved by an external
PTIME procedure

Subject reduction + soundness for AST

Next steps:

type inference (decidable again??)

extensions with refinement types, non-affine terms
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Towards Higher-Order

Probabilistic Verification
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Probabilistic HOMC

IntList random_list() {

IntList list = Nil;

while(rand() > 0.1) {

list := rand_int()::list;

}

return l;

}

⊕ 1
10

⊕ 1
10

⊕ 1
10

...data

data

Nil

data

Nil

Nil
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Probabilistic HOMC

Allows to represent probabilistic
programs.

And to define higher-order regular
Markov Decision Processes: those
bisimilar to their encoding
represented by a HORS.

(encoding of probabilities +
payoffs in symbols)

⊕ 1
10

⊕ 1
10

⊕ 1
10

...data

data

Nil

data

Nil

Nil
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Current directions

In a talk at Singapore last September: a notion of probabilistic tree
automata + a sound and complete type system, but

I no result of complexity / decidability

I automata not formally related to logic, and the corresponding logic
seems a bit “weak” from a probabilistic perspective

Two leads :

I Probabilistic µ-calculus of Castro, Kilmurray, Piterman + connection
with obligation games (Chatterjee-Piterman)

I Recursive Markov Chains (Etessami-Yannakakis) for which there exists
verification result (wrt Büchi automata)
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Conclusions

Multiple approaches for higher-order model-checking, from theory to
practice. Here, using semantics of linear logic to make the theory
clearer.

A type system for checking termination of affine probabilistic
programs.

Some preliminary hints to check for more than just termination
properties.

Thank you for your attention!
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