
Verifying properties of functional programs:
from the deterministic to the probabilistic case

Charles Grellois
(partly joint with Dal Lago and Melliès)

FOCUS Team – INRIA & University of Bologna

Séminaire au LIP, ENS Lyon
May 12, 2017

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 1 / 68

Functional programs,

Higher-order models

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 2 / 68

Imperative vs. functional programs

Imperative programs: built on finite state machines (like Turing
machines).

Notion of state, global memory.

Functional programs: built on functions that are composed together
(like in Lambda-calculus).

No state (except in impure languages), higher-order: functions can
manipulate functions.

(recall that Turing machines and λ-terms are equivalent in expressive
power)

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 3 / 68

Imperative vs. functional programs

Imperative programs: built on finite state machines (like Turing
machines).

Notion of state, global memory.

Functional programs: built on functions that are composed together
(like in Lambda-calculus).

No state (except in impure languages), higher-order: functions can
manipulate functions.

(recall that Turing machines and λ-terms are equivalent in expressive
power)

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 3 / 68

Example: imperative factorial

int fact(int n) {

int res = 1;

for i from 1 to n do {

res = res * i;

}

}

return res;

}

Typical way of doing: using a variable (change the state).

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 4 / 68

Example: functional factorial

In OCaml:

let rec factorial n =

if n <= 1 then

1

else

factorial (n-1) * n;;

Typical way of doing: using a recursive function (don’t change the state).

In practice, forbidding global variables reduces considerably the number of
bugs, especially in a parallel setting (cf. Erlang).

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 5 / 68

Advantages of functional programs

Very mathematical: calculus of functions.

. . . and thus very much studied from a mathematical point of view.
This notably leads to strong typing, a marvellous feature.

Much less error-prone: no manipulation of global state.

More and more used, from Haskell and Caml to Scala, Javascript and even
Java 8 nowadays.

Also emerging for probabilistic programming.

Price to pay: analysis of higher-order constructs.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 6 / 68

Advantages of functional programs

Price to pay: analysis of higher-order constructs.

Example of higher-order function: map.

map ϕ [0, 1, 2] returns [ϕ(0), ϕ(1), ϕ(2)].

Higher-order: map is a function taking a function ϕ as input.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 7 / 68

Advantages of functional programs

Price to pay: analysis of higher-order constructs.

Function calls + recursivity = deal with stacks of calls → approaches
for verification using automata with stacks of stacks of stacks. . . or
with Krivine machines that also have a stack of calls

Based on λ-calculus with recursion and types: we will use its
semantics to do verification

That’s the first goal of the talk.

(but that’s only an approach among many others)

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 7 / 68

Probabilistic functional programs

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography, machine
learning, AI. . .

What if we add probabilistic constructs?

In this talk: M ⊕p N →v

{
Mp, N1−p

}
Allows to simulate some random distributions, not all. In future work: add
fully the two roots of probabilistic programming, drawing values at random
from more probability distributions (typically on the reals), and
conditioning which allows among others to do machine learning.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 8 / 68

Probabilistic functional programs

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography, machine
learning, AI. . .

What if we add probabilistic constructs?

In this talk: M ⊕p N →v

{
Mp, N1−p

}
Second goal of the talk. Go towards verification of probabilistic functional
programs. We give an incomplete method for termination-checking and
hints towards verification of more properties.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 8 / 68

Using higher-order functions

Bending a coin in the probabilistic functional language Church:

var makeCoin = function(weight) {

return function() {

flip(weight) ? ’h’ : ’t’

}

}

var bend = function(coin) {

return function() {

(coin() == ’h’) ? makeCoin(0.7)() : makeCoin(0.1)()

}

}

var fairCoin = makeCoin(0.5)

var bentCoin = bend(fairCoin)

viz(repeat(100,bentCoin))

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 9 / 68

Roadmap

1 Semantics of linear logic for verification of deterministic functional
programs

2 A type system for termination of probabilistic functional programs

3 Towards verification for the probabilistic case?

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 10 / 68

Semantics of linear logic and higher-order model-checking

Linear logic: a logical system with an emphasis on the notion of resource.

Model-checking: a key technique in verification — where we want to
determine automatically whether a program satisfies a specification.

My thesis: linear logic and its semantics can be enriched to obtain new
and cleaner proofs of decidability in higher-order model-checking.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 11 / 68

What is model-checking?

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 12 / 68

The halting problem

A natural question: does a program always terminate?

Undecidable problem (Turing 1936): a machine can not always determine
the answer.

What if we use approximations?

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 13 / 68

Model-checking

Approximate the program −→ build a model M.

Then, formulate a logical specification ϕ over the model.

Aim: design a program which checks whether

M � ϕ.

That is, whether the model M meets the specification ϕ.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 14 / 68

An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data() :: x

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 15 / 68

An example

Main = Listen Nil

Listen x = if end signal() then x
else Listen received data()::x

A tree model:

if

if

if
...data

data

Nil

data

Nil

Nil

We abstracted conditionals and datatypes.
The approximation contains a non-terminating branch.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 15 / 68

Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

is not regular: it is not the unfolding of a finite graph as

if

Nil if

data

Nil

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 16 / 68

Finite representations of infinite trees

if

if

if
...data

data

Nil

data

Nil

Nil

but it is represented by a higher-order recursion scheme (HORS).

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 16 / 68

Modeling functional programs

using higher-order

recursion schemes

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 17 / 68

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

Rewriting starts from the start symbol S:

S →G
L

Nil

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 18 / 68

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

L

Nil

→G

if

L

data

Nil

Nil

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 18 / 68

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 18 / 68

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

〈G〉 =

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 18 / 68

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

They are also equi-expressive to pushdown automata with stacks of stacks
of stacks. . . and a collapse operation.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 18 / 68

Alternating parity tree automata

Checking specifications over trees

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 19 / 68

Monadic second order logic

MSO is a common logic in verification, allowing to express properties as:

“ all executions halt ”

“ a given operation is executed infinitely often in some execution ”

“ every time data is added to a buffer, it is eventually processed ”

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 20 / 68

Alternating parity tree automata

Checking whether a formula holds can be performed using an automaton.

For an MSO formula ϕ, there exists an equivalent APT Aϕ s.t.

〈G〉 � ϕ iff Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 21 / 68

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 22 / 68

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 22 / 68

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 23 / 68

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � ϕ.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 23 / 68

The higher-order model-checking
problems

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 24 / 68

The (local) HOMC problem

Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = “ there is an infinite execution ”

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true.
Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 25 / 68

The (local) HOMC problem

Input: HORS G, formula ϕ.

Output: true if and only if 〈G〉 � ϕ.

Example: ϕ = “ there is an infinite execution ”

if

if

if
...data

data

Nil

data

Nil

Nil

Output: true.
Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 25 / 68

The global HOMC problem

Input: HORS G, formula ϕ.

Output: a HORS G• producing a marking of 〈G〉.

Example: ϕ = “ there is an infinite execution ”

Output: G• of value tree:

if•

if•

if•

...data

data

Nil

data

Nil

Nil

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 26 / 68

The selection problem

Input: HORS G, APT A, state q ∈ Q.

Output: false if there is no winning run of A over 〈G〉.
Else, a HORS Gq producing a such a winning run.

Example: ϕ = “ there is an infinite execution ”, q0 corresponding to ϕ

Output: Gq0 producing

ifq0

ifq0

ifq0

...

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 27 / 68

Our line of work (joint with Melliès)

These three problems are decidable, with elaborate proofs (often) relying
on semantics.

Our contribution: an excavation of the semantic roots of HOMC, at the
light of linear logic, leading to refined and clarified proofs.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 28 / 68

Recognition by homomorphism

Where semantics comes into play

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 29 / 68

Automata and recognition
For the usual finite automata on words: given a regular language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if. . .

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism ϕ : A∗ → M such that L = ϕ−1(K).

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 30 / 68

Automata and recognition

The picture we want:

(after Aehlig 2006, Salvati 2009)

but with recursion and w.r.t. an APT.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 31 / 68

Intersection types and alternation

A first connection with linear logic

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 32 / 68

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ → (q0 ∧ q1)→ q0

refining the simple typing

if : o → o → o

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 33 / 68

Alternating tree automata and intersection types

In a derivation typing the tree if T1 T2 :

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
∅ ` T2 : q0

...
∅ ` T2 : q1

App
∅ ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi 2009)

` G : q0 iff the ATA Aϕ has a run-tree over 〈G〉.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 34 / 68

A closer look at the Application rule

In the intersection type system:

∆ ` t : (θ1 ∧ · · · ∧ θn)→ θ ∆i ` u : θi
App

∆ , ∆1 , . . . , ∆n ` t u : θ

This rule could be decomposed as:

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 35 / 68

A closer look at the Application rule

In the intersection type system:

∆ ` t : (θ1 ∧ · · · ∧ θn)→ θ ∆i ` u : θi
App

∆ , ∆1 , . . . , ∆n ` t u : θ

This rule could be decomposed as:

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 35 / 68

A closer look at the Application rule

∆ ` t : (
∧n

i=1 θi)→ θ′
∆i ` u : θi ∀i ∈ {1, . . . , n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Linear decomposition of the intuitionistic arrow:

A⇒ B = !A(B

Two steps: duplication / erasure, then linear use.

Right
∧

corresponds to the Promotion rule of indexed linear logic.
(see G.-Melliès, ITRS 2014)

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 36 / 68

Intersection types and semantics of linear logic

A⇒ B = !A(B

Two interpretations of the exponential modality:

Qualitative models
(Scott semantics)

!A = Pfin(A)

[[o ⇒ o]] = Pfin(Q)× Q

{q0, q0, q1} = {q0, q1}

Order closure

Quantitative models
(Relational semantics)

!A = Mfin(A)

[[o ⇒ o]] = Mfin(Q)× Q

[q0, q0, q1] 6= [q0, q1]

Unbounded multiplicities

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 37 / 68

An example of interpretation

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

In Rel , one denotation:

([q0, q1, q1], [q1], q0)

In ScottL, a set
containing the principal
type

({q0, q1}, {q1}, q0)

but also

({q0, q1, q2}, {q1}, q0)

and

({q0, q1}, {q0, q1}, q0)

and . . .
Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 38 / 68

Intersection types and semantics of linear logic

Rel!

Ehrhard

��

Bucciarelli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

Let t be a term normalizing to a tree 〈t〉 and A be an alternating
automaton.

A accepts 〈t〉 from q ⇔ q ∈ [[t]] ⇔ ∅ ` t : q :: o

Extension with recursion and parity condition?

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 39 / 68

Adding parity conditions
to the type system

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 40 / 68

An example of colored intersection type

Set Ω(q0) = 0 and Ω(q1) = 1.

λx

λy

a q1

a q1

x q1x q1

a q0

y q1x q0

has now type
�0 q0 ∧�1 q1 → �1 q1 → q1

Note the color 0 on q0. . .

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 41 / 68

A type-system for verification

We devise a type system capturing all MSO:

Theorem (G.-Melliès 2014, from Kobayashi-Ong 2009)

S : q0 ` S : q0 admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over 〈G〉.

We obtain decidability by considering idempotent types.

Our reformulation

shows the modal nature of � (in the sense of S4),

internalizes the parity condition,

paves the way for semantic constructions.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 42 / 68

Colored semantics

We extend:

Rel with countable multiplicities, coloring and an
inductive-coinductive fixpoint

ScottL with coloring and an inductive-coinductive fixpoint.

Methodology: think in the relational semantics, and adapt to the Scott
semantics using Ehrhard’s 2012 result:

the finitary model ScottL is the extensional collapse of Rel .

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 43 / 68

Finitary semantics

In ScottL, we define �, λ and Y using downward-closures.
ScottL is a model of the λY -calculus.

Theorem

An APT A has a winning run from q0 over 〈G〉 if and only if

q0 ∈ [[λ(G)]].

Corollary

The local higher-order model-checking problem is decidable (and is
n-EXPTIME complete).

We could also obtain global model-checking and selection.

Similar model-theoretic results were obtained by Salvati and Walukiewicz
the same year.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 44 / 68

Probabilistic Termination

Checking a first property on probabilistic program

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 45 / 68

Motivations

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography,
machine learning, AI. . .

Quantitative notion of termination: almost-sure termination (AST)

AST has been studied for imperative programs in the last years. . .

. . . but what about the functional probabilistic languages?

We introduce a monadic, affine sized type system sound for AST.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 46 / 68

Sized types: the deterministic case

Simply-typed λ-calculus is strongly normalizing (SN).

Γ, x : σ ` x : σ
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ

Γ ` M : σ → τ Γ ` N : σ
Γ ` M N : τ

where σ, τ ::= o
∣∣ σ → τ .

Forbids the looping term Ω = (λx .x x)(λx .x x).

Strong normalization: all computations terminate.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 47 / 68

Sized types: the deterministic case

Simply-typed λ-calculus is strongly normalizing (SN).

No longer true with the letrec construction. . .

Sized types: a decidable extension of the simple type system ensuring SN
for λ-terms with letrec.

See notably:

Hughes-Pareto-Sabry 1996, Proving the correctness of reactive
systems using sized types,

Barthe-Frade-Giménez-Pinto-Uustalu 2004, Type-based termination
of recursive definitions.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 47 / 68

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Idea: k successors = at most k constructors.

Nat̂i is 0,

Nat̂̂i is 0 or S 0,

. . .

Nat∞ is any natural number. Often denoted simply Nat.

The same for lists,. . .

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 48 / 68

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

“To define the action of f on size n + 1,
we only call recursively f on size at most n”

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 48 / 68

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

Typable =⇒ SN. Proof using reducibility candidates.

Decidable type inference.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 48 / 68

Sized types: example in the deterministic case

From Barthe et al. (op. cit.):

The case rule ensures that the size of x ′ is lesser than the one of x .
Size decreases during recursive calls ⇒ SN.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 49 / 68

A probabilistic λ-calculus

M, N, . . . ::= V
∣∣ V V

∣∣ let x = M in N
∣∣ M ⊕p N∣∣ case V of { S→W | 0→ Z }

V , W , Z , . . . ::= x
∣∣ 0

∣∣ S V
∣∣ λx .M ∣∣ letrec f = V

Formulation equivalent to λ-calculus with ⊕p, but constrained for
technical reasons (A-normal form)

Restriction to base type Nat for simplicity, but can be extended to
general inductive datatypes (as in sized types)

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 50 / 68

A probabilistic λ-calculus: operational semantics

let x = V in M →v

{
(M[x/V])1

}

(λx .M) V →v

{
(M[x/V])1

}

(letrec f = V)
(
c
−→
W
)
→v

{(
V [f / (letrec f = V)]

(
c
−→
W
))1

}

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 51 / 68

A probabilistic λ-calculus: operational semantics

case S V of {S→W | 0→ Z } →v

{
(W V)1

}

case 0 of { S→W | 0→ Z } →v

{
(Z)1

}

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 52 / 68

A probabilistic λ-calculus: operational semantics

M ⊕p N →v

{
Mp, N1−p

}
M →v

{
Lpi

i

∣∣ i ∈ I
}

let x = M in N →v

{
(let x = Li in N)pi

∣∣ i ∈ I
}

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 53 / 68

A probabilistic λ-calculus: operational semantics

D
VD
=

{
M

pj

j

∣∣ j ∈ J
}

+ DV ∀j ∈ J, Mj →v Ej

D →v

(∑
j∈J pj · Ej

)
+ DV

For D a distribution of terms:

[[D]] = supn∈N
({

Dn

∣∣ D Vn
v Dn

})
where Vn

v is →n
v followed by projection on values.

We let [[M]] = [[
{
M1
}

]].

M is AST iff
∑

[[M]] = 1.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 54 / 68

Random walks as probabilistic terms

Biased random walk:

Mbias =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y)))
∣∣ 0→ 0

})
n
¯

Unbiased random walk:

Munb =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

})
n
¯

∑
[[Mbias]] =

∑
[[Munb]] = 1

Capture this in a sized type system?

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 55 / 68

Another term

We also want to capture terms as:

Mnat =
(

letrec f = λx .x ⊕ 1
2

S (f x)
)

0

of semantics

[[Mnat]] =
{

(0)
1
2 , (S 0)

1
4 , (S S 0)

1
8 , . . .

}
summing to 1.

Remark that this recursive function generates the geometric distribution.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 56 / 68

Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

Kind of product interpretation of ⊕: we can’t capture more than SN. . .

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 57 / 68

Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

We get at best

f : Nat̂̂i → Nat∞

`

λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

}
: Nat̂i → Nat∞

and can’t use a variation of the letrec rule on that.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 57 / 68

Beyond SN terms, towards distribution types

We will use distribution types, built as follows:

Γ |Θ ` M : µ Γ |Ψ ` N : ν {|µ |} = {| ν |}
Choice

Γ |Θ⊕p Ψ ` M ⊕p N : µ⊕p ν

Now

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

}
: Nat̂i → Nat∞

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 58 / 68

Designing the fixpoint rule

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

}
: Nat̂i → Nat∞

induces a random walk on N:

on n + 1, move to n with probability 1
2 , on n + 2 with probability 1

2 ,

on 0, loop.

The type system ensures that there is no recursive call from size 0.

Random walk AST (= reaches 0 with proba 1) ⇒ termination.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 59 / 68

Designing the fixpoint rule

{| Γ |} = Nat

i /∈ Γ and i positive in ν{
(Natsj → ν[i/sj])

pj
∣∣ j ∈ J

}
induces an AST sized walk

Γ | f :
{

(Natsj → ν[i/sj])
pj
∣∣ j ∈ J

}
` V : Nat̂i → ν[i/̂i]

LetRec
Γ | ∅ ` letrec f = V : Natr → ν[i/r]

Sized walk: AST is checked by an external PTIME procedure.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 59 / 68

Generalized random walks and the necessity of affinity

A crucial feature: our type system is affine.

Higher-order symbols occur at most once. Consider:

Mnaff = letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y) ; f (S S y))
∣∣ 0→ 0

}

The induced sized walk is AST.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 60 / 68

Generalized random walks and the necessity of affinity
Tree of recursive calls, starting from 1:

[1]

[2 2]

[2 3 3]

...

[2 1]

[2 2 2]

...

[2]

[3 3]

...

[1]

[2 2]

...

[0]

[0]

Leftmost edges have
probability 2

3 ;
rightmost ones 1

3 .

This random process
is not AST.

Problem:
modelisation by sized
walk only makes
sense for affine
programs.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 61 / 68

Key properties

A nice subject reduction property, and:

Theorem (Typing soundness)

If Γ |Θ ` M : µ, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 62 / 68

Conclusion of this part

Main features of the type system:

Affine type system with distributions of types

Sized walks induced by the letrec rule and solved by an external
PTIME procedure

Subject reduction + soundness for AST

Next steps:

type inference (decidable again??)

extensions with refinement types, non-affine terms

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 63 / 68

Towards Higher-Order

Probabilistic Verification

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 64 / 68

Probabilistic HOMC

IntList random_list() {

IntList list = Nil;

while(rand() > 0.1) {

list := rand_int()::list;

}

return l;

}

⊕ 1
10

⊕ 1
10

⊕ 1
10

...data

data

Nil

data

Nil

Nil

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 65 / 68

Probabilistic HOMC

Allows to represent probabilistic
programs.

And to define higher-order regular
Markov Decision Processes: those
bisimilar to their encoding
represented by a HORS.

(encoding of probabilities +
payoffs in symbols)

⊕ 1
10

⊕ 1
10

⊕ 1
10

...data

data

Nil

data

Nil

Nil

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 66 / 68

Current directions

In a talk at Singapore last September: a notion of probabilistic tree
automata + a sound and complete type system, but

I no result of complexity / decidability

I automata not formally related to logic, and the corresponding logic
seems a bit “weak” from a probabilistic perspective

Two leads :

I Probabilistic µ-calculus of Castro, Kilmurray, Piterman + connection
with obligation games (Chatterjee-Piterman)

I Recursive Markov Chains (Etessami-Yannakakis) for which there exists
verification result (wrt Büchi automata)

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 67 / 68

Conclusions

Multiple approaches for higher-order model-checking, from theory to
practice. Here, using semantics of linear logic to make the theory
clearer.

A type system for checking termination of affine probabilistic
programs.

Some preliminary hints to check for more than just termination
properties.

Thank you for your attention!

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 68 / 68

Conclusions

Multiple approaches for higher-order model-checking, from theory to
practice. Here, using semantics of linear logic to make the theory
clearer.

A type system for checking termination of affine probabilistic
programs.

Some preliminary hints to check for more than just termination
properties.

Thank you for your attention!

Charles Grellois (INRIA & U. Bologna) Verifying functional programs May 12, 2017 68 / 68

