
Type systems and logical models
for higher-order verification

Charles Grellois (joint work with Paul-André Melliès)

PPS & LIAFA — Université Paris 7

November 24th, 2014

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 1 / 83

Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model of a program

Specify a property in an appropriate logic

Make them interact in order to determine whether the program
satisfies the property.

Interaction is often realized by translating the formula into an equivalent
automaton, which then runs over the model.

Need to balance expressivity vs. complexity in the choice of the model and
of the logic.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 2 / 83

A very naive model-checking problem

Consider the most naive possible model-checking problem where:

Actions of the program are modelled by a finite word

The property to check corresponds to a finite automaton

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 3 / 83

A very naive model-checking problem

A word of actions :

open · (read · write)2 · close

A property to check: is every read immediately followed by a write ?

Corresponds to an automaton with two states: Q = {q0, q1}.
q0 is both initial and final.
q1 means a read was seen.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 4 / 83

A very naive model-checking problem

A word of actions :

open · (read · write)2 · close

A property to check: is every read immediately followed by a write ?

Corresponds to an automaton with two states: Q = {q0, q1}.
q0 is both initial and final.
q1 means a read was seen.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 4 / 83

A very naive model-checking problem

A word of actions :

open · (read · write)2 · close

A property to check: is every read immediately followed by a write ?

Corresponds to an automaton with two states: Q = {q0, q1}.
q0 is both initial and final.
q1 means a read was seen.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 4 / 83

A type-theoretic intuition

The transition function may be seen as a typing of the letters of the word,
seen as function symbols.

For example,

δ(q0, read) = q1

corresponds to the typing

read : q1 → q0

This means that read , when catenated to the left of a word accepting
from q1, results in a word accepting from q0.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 5 / 83

A type-theoretic intuition

The transition function may be seen as a typing of the letters of the word,
seen as function symbols.

For example,

δ(q0, read) = q1

corresponds to the typing

read : q1 → q0

This means that read , when catenated to the left of a word accepting
from q1, results in a word accepting from q0.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 5 / 83

A type-theoretic intuition

The transition function may be seen as a typing of the letters of the word,
seen as function symbols.

For example,

δ(q0, read) = q1

corresponds to the typing

read : q1 → q0

This means that read , when catenated to the left of a word accepting
from q1, results in a word accepting from q0.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 5 / 83

A type-theoretic intuition: a run of the automaton

` open · (read · write)2 · close : q0

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 6 / 83

A type-theoretic intuition: a run of the automaton

` open : q0 → q0 ` (read · write)2 · close : q0

` open · (read · write)2 · close : q0

Note that the word is seen as a term.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 7 / 83

A type-theoretic intuition: a run of the automaton

` read : q1 → q0 ` write · read · write · close : q1

` (read · write)2 · close : q0

...

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 8 / 83

A type-theoretic intuition: a run of the automaton

` read : q1 → q0

` write : q0 → q1 ` read · write · close : q0

` write · read · write · close : q1

` (read · write)2 · close : q0

...

and so on.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 9 / 83

A type-theoretic intuition: a run of the automaton

` read : q1 → q0

` write : q0 → q1 ` read · write · close : q0

` write · read · write · close : q1

` (read · write)2 · close : q0

...

and so on.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 9 / 83

Automata and recognition

Recall that, given a language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism φ : A∗ → M such that L = φ−1(K).

Roughly speaking: there exists a finite algebraic structure in which the
language is interpreted

Note that the interpretation depends on the choice of A. However, the
problem can be reformulated in order to remove this dependency.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 10 / 83

Automata and recognition

Recall that, given a language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism φ : A∗ → M such that L = φ−1(K).

Roughly speaking: there exists a finite algebraic structure in which the
language is interpreted

Note that the interpretation depends on the choice of A. However, the
problem can be reformulated in order to remove this dependency.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 10 / 83

A very naive model-checking problem

Now the model-checking problem can be solved by:

computing the interpretation of a word

and check whether it belongs to M

or, equivalently, by typing the program with the initial state of the
automaton.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 11 / 83

Back to types

Typing naturally lifts to terms: from

` open : q0 → q0

π

` (read · write)2 · close : q0

` open · (read · write)2 · close : q0

we can deduce

` open : q0 → q0 x : q0 ` x : q0

x : q0 ` open x : q0

` λx . open x : q0 → q0

π

` (read · write)2 · close : q0

` (λx . open x)
(

(read · write)2 · close
)

: q0

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 12 / 83

Back to types

Typing naturally lifts to terms: from

` open : q0 → q0

π

` (read · write)2 · close : q0

` open · (read · write)2 · close : q0

we can deduce

` open : q0 → q0 x : q0 ` x : q0

x : q0 ` open x : q0

` λx . open x : q0 → q0

π

` (read · write)2 · close : q0

` (λx . open x)
(

(read · write)2 · close
)

: q0

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 12 / 83

Back to types

This is interesting, as it suggests to directly type programs in order to
model-check them.

There is no need to reduce them prior to running automata, we can lift
their behaviour to higher-order.

On the other hand, the monoid approach is not suited for that: could we
replace it with a higher-order analogue ?

Logical models are good candidates.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 13 / 83

Back to types

This is interesting, as it suggests to directly type programs in order to
model-check them.

There is no need to reduce them prior to running automata, we can lift
their behaviour to higher-order.

On the other hand, the monoid approach is not suited for that: could we
replace it with a higher-order analogue ?

Logical models are good candidates.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 13 / 83

Back to types

This is interesting, as it suggests to directly type programs in order to
model-check them.

There is no need to reduce them prior to running automata, we can lift
their behaviour to higher-order.

On the other hand, the monoid approach is not suited for that: could we
replace it with a higher-order analogue ?

Logical models are good candidates.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 13 / 83

Infinite words and Büchi conditions

A more elaborate problem: what about ultimately periodic words and
Büchi automata ?

Recall that a ultimately periodic word can be written s · tω.

On the type system, we deal with the (·)ω operation with a new rule:

` t · tω : q
fix ` tω : q

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 14 / 83

Infinite words and Büchi conditions

A more elaborate problem: what about ultimately periodic words and
Büchi automata ?

Recall that a ultimately periodic word can be written s · tω.

On the type system, we deal with the (·)ω operation with a new rule:

` t · tω : q
fix ` tω : q

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 14 / 83

Infinite words and Büchi conditions

` t · tω : q
fix ` tω : q

This leads to infinite-depth derivations, over which we may transpose the
Büchi condition, discriminating winning and loosing derivation trees.

The existence of a winning derivation tree will be equivalent to the
existence of a successful run of a Büchi automaton over the normal form
of the term.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 15 / 83

Infinite words and Büchi conditions

` t · tω : q
fix ` tω : q

This leads to infinite-depth derivations, over which we may transpose the
Büchi condition, discriminating winning and loosing derivation trees.

The existence of a winning derivation tree will be equivalent to the
existence of a successful run of a Büchi automaton over the normal form
of the term.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 15 / 83

Infinite words and Büchi conditions

In the monoid approach, we now need not only a good model for replacing
the monoid, but also a good fixpoint operation.

This fixpoint should only produce denotations complying with the Büchi
condition.

A last remark: in this work, the aim is that typing derivations reflect the
computation of denotations in the model.

After this long prologue, let’s move to higher-order verification !

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 16 / 83

Infinite words and Büchi conditions

In the monoid approach, we now need not only a good model for replacing
the monoid, but also a good fixpoint operation.

This fixpoint should only produce denotations complying with the Büchi
condition.

A last remark: in this work, the aim is that typing derivations reflect the
computation of denotations in the model.

After this long prologue, let’s move to higher-order verification !

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 16 / 83

Infinite words and Büchi conditions

In the monoid approach, we now need not only a good model for replacing
the monoid, but also a good fixpoint operation.

This fixpoint should only produce denotations complying with the Büchi
condition.

A last remark: in this work, the aim is that typing derivations reflect the
computation of denotations in the model.

After this long prologue, let’s move to higher-order verification !

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 16 / 83

Model-checking higher-order programs

This work is concerned with the verification of higher-order functional
programs, as Java for instance.

A function may take a function as input.
Example: compose φ x = φ(φ(x))

A model for such programs is higher-order recursion schemes (HORS),
generating trees describing all the potential behaviours of a program.

Properties will be expressed in MSO or modal µ-calculus (equi-expressive
over trees).

Their automata counterpart is given by alternating parity automata (APT).

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 17 / 83

Model-checking higher-order programs

This work is concerned with the verification of higher-order functional
programs, as Java for instance.

A function may take a function as input.
Example: compose φ x = φ(φ(x))

A model for such programs is higher-order recursion schemes (HORS),
generating trees describing all the potential behaviours of a program.

Properties will be expressed in MSO or modal µ-calculus (equi-expressive
over trees).

Their automata counterpart is given by alternating parity automata (APT).

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 17 / 83

Model-checking higher-order programs

This work is concerned with the verification of higher-order functional
programs, as Java for instance.

A function may take a function as input.
Example: compose φ x = φ(φ(x))

A model for such programs is higher-order recursion schemes (HORS),
generating trees describing all the potential behaviours of a program.

Properties will be expressed in MSO or modal µ-calculus (equi-expressive
over trees).

Their automata counterpart is given by alternating parity automata (APT).

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 17 / 83

Model-checking higher-order programs

This work is concerned with the verification of higher-order functional
programs, as Java for instance.

A function may take a function as input.
Example: compose φ x = φ(φ(x))

A model for such programs is higher-order recursion schemes (HORS),
generating trees describing all the potential behaviours of a program.

Properties will be expressed in MSO or modal µ-calculus (equi-expressive
over trees).

Their automata counterpart is given by alternating parity automata (APT).

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 17 / 83

Model-checking higher-order programs

This model-checking problem is decidable:

Ong 2006 (game semantics)

Hague-Murawski-Ong-Serre 2008 (game semantics, higher-order
pushdown automata)

Kobayashi-Ong 2009 (intersection types)

Salvati-Walukiewicz (interpretation in finite models)

. . .

Our aim is to deepen the semantic understanding we have of this result,
using existing relations between alternating automata, intersection types,
(linear) logic and its models.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 18 / 83

Model-checking higher-order programs

Is it possible to extend to this situation the setting for finite automata ?

We would like to interpret the tree of behaviours in an algebraic structure,
so that

acceptance by the automata

would reduce to

checking whether some element belongs to the semantics

of the tree.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 19 / 83

Higher-order recursion schemes

Idea: it is a kind of grammar whose parameters may be functions and
which generates trees.

Alternatively, it is a formalism equivalent to λY calculus with
uninterpreted constants from a ranked alphabet Σ.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 20 / 83

A very simple functional program

Main = Listen Nil

Listen x = if end then x else Listen (data x)

With a recursion scheme we can model this program and produce its tree
of behaviours.

Note that constants are not interpreted: in particular, a recursion scheme
does not evaluate a boolean conditional if ... then ... else ...

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 21 / 83

A very simple functional program

Main = Listen Nil

Listen x = if end then x else Listen (data x)

With a recursion scheme we can model this program and produce its tree
of behaviours.

Note that constants are not interpreted: in particular, a recursion scheme
does not evaluate a boolean conditional if ... then ... else ...

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 21 / 83

A very simple functional program

Main = Listen Nil

Listen x = if end then x else Listen (data x)

formulated as a recursion scheme:

S = L Nil

L x = if x (L (data x)

or, in λ-calculus style :

S = L Nil

L = λx . if x (L (data x)

(this latter representation is a regular grammar – equivalently, a λY -term)

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 22 / 83

A very simple functional program

Main = Listen Nil

Listen x = if end then x else Listen (data x)

formulated as a recursion scheme:

S = L Nil

L x = if x (L (data x)

or, in λ-calculus style :

S = L Nil

L = λx . if x (L (data x)

(this latter representation is a regular grammar – equivalently, a λY -term)

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 22 / 83

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

S

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 23 / 83

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

S =⇒
L

Nil

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 24 / 83

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

L

Nil

=⇒

if

L

data

Nil

Nil

Notice that substitution and expansion occur in one same step.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 25 / 83

Value tree of a recursion scheme
S = L Nil

L x = if x (L (data x)
generates:

if

L

data

Nil

Nil

=⇒

if

if

L

data

data

Nil

data

Nil

Nil

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 26 / 83

Value tree of a recursion scheme

if

if

if

...data

data

Nil

data

Nil

Nil

Very simple program, yet it produces a tree which is not regular. . .

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 27 / 83

Value tree of a recursion scheme

if

if

if

...data

data

Nil

data

Nil

Nil

Very simple program, yet it produces a tree which is not regular. . .

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 27 / 83

Representation of recursion schemes

The only finite representation of such a tree is actually the scheme itself
— even for this very simple, order-1 recursion scheme.

So, it is the λY -term itself which we should use for verification.

Our aim will thus be to extend the ideas of the prologue to our current
setting, so that the interpretation of the term in a suitable domain would
reflect the automaton’s behaviour on its infinite, non-regular normal form.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 28 / 83

Modal µ-calculus

Over trees we may use several logics: CTL, MSO,. . .

In this work we use modal µ-calculus. It is equivalent to MSO over trees.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 29 / 83

Modal µ-calculus

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

X is a variable

a is a predicate corresponding to a symbol of Σ

�φ means that φ should hold on every successor of the current node

�i φ means that φ should hold on one successor of the current node (in
direction i)

We can also define (variant) � =
∨

i �i .

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 30 / 83

Modal µ-calculus

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

X is a variable

a is a predicate corresponding to a symbol of Σ

�φ means that φ should hold on every successor of the current node

�i φ means that φ should hold on one successor of the current node (in
direction i)

We can also define (variant) � =
∨

i �i .

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 30 / 83

Modal µ-calculus

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

X is a variable

a is a predicate corresponding to a symbol of Σ

�φ means that φ should hold on every successor of the current node

�i φ means that φ should hold on one successor of the current node (in
direction i)

We can also define (variant) � =
∨

i �i .

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 30 / 83

Modal µ-calculus

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

µX . φ is the least fixpoint of φ(X). It is computed by expanding finitely
the formula:

µX . φ(X) −→ φ(µX . φ(X)) −→ φ(φ(µX . φ(X)))

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 31 / 83

Modal µ-calculus

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

Dually, νX . φ is the greatest fixpoint of φ(X). It is computed by
expanding infinitely the formula:

νX . φ(X) −→ φ(νX . φ(X)) −→ φ(φ(νX . φ(X)))

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 32 / 83

Modal µ-calculus

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

What does:

φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)

mean ?

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 33 / 83

Interaction with trees: a shift to automata theory

Logic is great !

. . . but how does it interact with a tree ?

An usual approach, notably over words, is to find an equi-expressive
automaton model.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 34 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if φ

if

if

...data

data

Nil

data

Nil

Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 35 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 φ

if

if

...data

data

Nil

data

Nil

Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 36 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if �1 (µY . (Nil ∨�Y)) ∧ �2 φ

if

if

...data

data

Nil

data

Nil

Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 37 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if �2 φ

if

if

...data

data

Nil

data

Nil

Nil µY . (Nil ∨�Y)

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 38 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if

if φ

if

...data

data

Nil

data

Nil

Nil µY . (Nil ∨�Y)

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 39 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if

if φ

if

...data

data

Nil

data

Nil

Nil Nil ∨�µY . (Nil ∨�Y)

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 40 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if

if φ

if

...data

data

Nil

data

Nil

Nil Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 41 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if

if

if φ

...data

data

Nil

data µY . (Nil ∨�Y)

Nil

Nil Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 42 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if

if

if φ

...data

data

Nil

data Nil ∨� (µY . (Nil ∨�Y))

Nil

Nil Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 43 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if

if

if φ

...data

data

Nil

data � (µY . (Nil ∨�Y))

Nil

Nil Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 44 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if

if

if φ

...data

data

Nil

data

Nil µY . (Nil ∨�Y)

Nil Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 45 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if

if

if φ

...data

data

Nil

data

Nil Nil ∨� (µY . (Nil ∨�Y))

Nil Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 46 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

if

if

if φ

...data

data

Nil

data

Nil Nil

Nil Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 47 / 83

Alternating parity tree automata

Conversion to an automaton ?

Needs to play the formula over the tree, but always by reading a
letter.

Idea: iterate the formula several times until you find a letter.

Needs non-determinism for ∨ and alternation for ∧
Needs a parity condition for distinguishing µ and ν

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 48 / 83

Alternating parity tree automata

Conversion to an automaton ?

Needs to play the formula over the tree, but always by reading a
letter.

Idea: iterate the formula several times until you find a letter.

Needs non-determinism for ∨ and alternation for ∧
Needs a parity condition for distinguishing µ and ν

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 48 / 83

Alternating parity tree automata

Conversion to an automaton ?

Needs to play the formula over the tree, but always by reading a
letter.

Idea: iterate the formula several times until you find a letter.

Needs non-determinism for ∨ and alternation for ∧
Needs a parity condition for distinguishing µ and ν

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 48 / 83

Alternating parity tree automata

APT are non-deterministic tree automata whose transitions may duplicate
or drop a subtree.

Example: δ(q0, if) = (2, q0) ∧ (2, q1).

This is reminiscent of the exponential modality of linear logic

So, in the sequel, we shall interpret recursion schemes in suitable
domain-theoretic models of linear logic.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 49 / 83

Alternating parity tree automata

APT are non-deterministic tree automata whose transitions may duplicate
or drop a subtree.

Example: δ(q0, if) = (2, q0) ∧ (2, q1).

This is reminiscent of the exponential modality of linear logic

So, in the sequel, we shall interpret recursion schemes in suitable
domain-theoretic models of linear logic.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 49 / 83

Alternating parity tree automata

APT are non-deterministic tree automata whose transitions may duplicate
or drop a subtree.

Example: δ(q0, if) = (2, q0) ∧ (2, q1).

This is reminiscent of the exponential modality of linear logic

So, in the sequel, we shall interpret recursion schemes in suitable
domain-theoretic models of linear logic.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 49 / 83

Alternating parity tree automata

δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 50 / 83

Alternating parity tree automata
δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

and so on. This gives the notion of run-tree.
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 51 / 83

Alternating parity tree automata
δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

and so on. This gives the notion of run-tree.
C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 51 / 83

Alternating parity tree automata

And for the inductive/coinductive behaviour ?

We introduce parity conditions.

Over a branch of a run-tree, say q0 has colour 0 and q1 has colour 1.

Now consider an infinite branch, and the maximal colour you see infinitely
often on this branch.

If it is even, accept: it means you looped infinitely on ν.

Else if it is odd the automaton rejects: it means µ was unfolded infinitely,
and this is forbidden.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 52 / 83

Alternating parity tree automata

And for the inductive/coinductive behaviour ?

We introduce parity conditions.

Over a branch of a run-tree, say q0 has colour 0 and q1 has colour 1.

Now consider an infinite branch, and the maximal colour you see infinitely
often on this branch.

If it is even, accept: it means you looped infinitely on ν.

Else if it is odd the automaton rejects: it means µ was unfolded infinitely,
and this is forbidden.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 52 / 83

Parity condition on an example

if �0 q0

if �0 q0

if �1 q1

... �1 q1data

data

Nil

data

Nil

Nil

would not be a winning run-tree: the automaton unfolded µ infinitely on
the infinite branch.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 53 / 83

Alternating parity tree automata

In general, every state is given a colour, and a run-tree is winning if and
only if all of its branches have an even maximal infinitely seen colour.

A tree is accepted iff it admits a winning run-tree. This is equivalent to
satisfying the modal µ-calculus property encoded by the automaton.

In a sense, run-trees are coinductive (they treat µ as ν), then the parity
condition selects a posteriori the ones complying with the inductive µ
policy.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 54 / 83

Alternating parity tree automata

In general, every state is given a colour, and a run-tree is winning if and
only if all of its branches have an even maximal infinitely seen colour.

A tree is accepted iff it admits a winning run-tree. This is equivalent to
satisfying the modal µ-calculus property encoded by the automaton.

In a sense, run-trees are coinductive (they treat µ as ν), then the parity
condition selects a posteriori the ones complying with the inductive µ
policy.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 54 / 83

Alternating parity tree automata and intersection types

A key remark (Kobayashi 2009): if δ(q, a) = (1, q0) ∧ (1, q1) ∧ (2, q2). . .

then we may consider that a has a refined intersection type

(q0 ∧ q1)⇒ q2 ⇒ q

Typing lifts to higher-order, and reflects the behaviour of the APT directly
over the finite representation of the program as a HORS.

This lifting to a finite representation is the key to decidability.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 55 / 83

Alternating parity tree automata and intersection types

A key remark (Kobayashi 2009): if δ(q, a) = (1, q0) ∧ (1, q1) ∧ (2, q2). . .

then we may consider that a has a refined intersection type

(q0 ∧ q1)⇒ q2 ⇒ q

Typing lifts to higher-order, and reflects the behaviour of the APT directly
over the finite representation of the program as a HORS.

This lifting to a finite representation is the key to decidability.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 55 / 83

Alternating parity tree automata and intersection types

A key remark (Kobayashi 2009): if δ(q, a) = (1, q0) ∧ (1, q1) ∧ (2, q2). . .

then we may consider that a has a refined intersection type

(q0 ∧ q1)⇒ q2 ⇒ q

Typing lifts to higher-order, and reflects the behaviour of the APT directly
over the finite representation of the program as a HORS.

This lifting to a finite representation is the key to decidability.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 55 / 83

A type-system for verification: without colours

Axiom
x :

∧
{i} θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 q1j → . . . →
∧kn

j=1 qnj → q :: ⊥ → · · · → ⊥

∆ ` t : (θ1 ∧ · · · ∧ θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ + ∆1 + . . . + ∆k ` t u : θ :: κ′

∆ , x :
∧

i∈I θi :: κ ` t : θ :: κ′ I ⊆ J
λ

∆ ` λ x . t :
(∧

j∈J θj

)
→ θ :: κ→ κ′

Γ ` R(F) : θ :: κ
fix

F : θ :: κ ` F : θ :: κ

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 56 / 83

A type-system for verification: without colours

Axiom
x :

∧
{i} θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 q1j → . . . →
∧kn

j=1 qnj → q :: ⊥ → · · · → ⊥

∆ ` t : (θ1 ∧ · · · ∧ θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ + ∆1 + . . . + ∆k ` t u : θ :: κ′

∆ , x :
∧

i∈I θi :: κ ` t : θ :: κ′ I ⊆ J
λ

∆ ` λ x . t :
(∧

j∈J θj

)
→ θ :: κ→ κ′

Γ ` R(F) : θ :: κ
fix

F : θ :: κ ` F : θ :: κ

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 56 / 83

A type-system for verification: without colours

Axiom
x :

∧
{i} θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 q1j → . . . →
∧kn

j=1 qnj → q :: ⊥ → · · · → ⊥

∆ ` t : (θ1 ∧ · · · ∧ θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ + ∆1 + . . . + ∆k ` t u : θ :: κ′

∆ , x :
∧

i∈I θi :: κ ` t : θ :: κ′ I ⊆ J
λ

∆ ` λ x . t :
(∧

j∈J θj

)
→ θ :: κ→ κ′

Γ ` R(F) : θ :: κ
fix

F : θ :: κ ` F : θ :: κ

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 56 / 83

A type-system for verification: without colours

Axiom
x :

∧
{i} θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 q1j → . . . →
∧kn

j=1 qnj → q :: ⊥ → · · · → ⊥

∆ ` t : (θ1 ∧ · · · ∧ θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ + ∆1 + . . . + ∆k ` t u : θ :: κ′

∆ , x :
∧

i∈I θi :: κ ` t : θ :: κ′ I ⊆ J
λ

∆ ` λ x . t :
(∧

j∈J θj

)
→ θ :: κ→ κ′

Γ ` R(F) : θ :: κ
fix

F : θ :: κ ` F : θ :: κ

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 56 / 83

A type-system for verification: without colours

Axiom
x :

∧
{i} θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 q1j → . . . →
∧kn

j=1 qnj → q :: ⊥ → · · · → ⊥

∆ ` t : (θ1 ∧ · · · ∧ θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ + ∆1 + . . . + ∆k ` t u : θ :: κ′

∆ , x :
∧

i∈I θi :: κ ` t : θ :: κ′ I ⊆ J
λ

∆ ` λ x . t :
(∧

j∈J θj

)
→ θ :: κ→ κ′

Γ ` R(F) : θ :: κ
fix

F : θ :: κ ` F : θ :: κ

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 56 / 83

A type-system for verification

Note that these intersection types are idempotent:

q0 ∧ q0 = q0

Intersection type systems have been studied a lot in semantics.

Typings may be understood as the construction of denotations in
appropriate models of linear logic.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 57 / 83

A type-system for verification

Note that these intersection types are idempotent:

q0 ∧ q0 = q0

Intersection type systems have been studied a lot in semantics.

Typings may be understood as the construction of denotations in
appropriate models of linear logic.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 57 / 83

Linear decomposition of the intuitionnistic arrow

For this work, we just need one fact from linear logic:

In linear logic, the intuitionnistic arrow A⇒ B factors as

A⇒ B = !A(B

In other terms, it consists in a replication of arguments and then in a
linear use of them.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 58 / 83

Linear decomposition of the intuitionnistic arrow

For this work, we just need one fact from linear logic:

In linear logic, the intuitionnistic arrow A⇒ B factors as

A⇒ B = !A(B

In other terms, it consists in a replication of arguments and then in a
linear use of them.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 58 / 83

Linear decomposition of the intuitionnistic arrow

For this work, we just need one fact from linear logic:

In linear logic, the intuitionnistic arrow A⇒ B factors as

A⇒ B = !A(B

In other terms, it consists in a replication of arguments and then in a
linear use of them.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 58 / 83

Models of linear logic

There are two main classes of models of linear logic:

qualitative models: the exponential modality enumerates the
resources used by a program, but not their multiplicity,

quantitative models, in which the number of occurences of a resource
is precisely tracked.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 59 / 83

Models of linear logic

Typing in Kobayashi’s system corresponds to interpretation in a qualitative
model of linear logic — due to idempotency of types, multiplicities are not
accounted for.

(only works for η-long forms. . .)

It is interesting to consider quantitative interpretations as well – their are
bigger, yet simpler.

They correspond to non-idempotent intersection types.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 60 / 83

Models of linear logic

Typing in Kobayashi’s system corresponds to interpretation in a qualitative
model of linear logic — due to idempotency of types, multiplicities are not
accounted for.

(only works for η-long forms. . .)

It is interesting to consider quantitative interpretations as well – their are
bigger, yet simpler.

They correspond to non-idempotent intersection types.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 60 / 83

Relational model of linear logic

Consider a relational model where

[[⊥]] = Q

[[A(B]] = [[A]]× [[B]]

[[!A]] = Mfin([[A]])

where Mfin(A) is the set of finite multisets of elements of [[A]].

As a consequence,

[[A⇒ B]] = Mfin([[A]])× [[B]]

It is some collection (with multiplicities) of elements of [[A]] producing an
element of [[B]].

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 61 / 83

Relational model of linear logic

Consider a relational model where

[[⊥]] = Q

[[A(B]] = [[A]]× [[B]]

[[!A]] = Mfin([[A]])

where Mfin(A) is the set of finite multisets of elements of [[A]].

As a consequence,

[[A⇒ B]] = Mfin([[A]])× [[B]]

It is some collection (with multiplicities) of elements of [[A]] producing an
element of [[B]].

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 61 / 83

Relational model of linear logic

Consider a relational model where

[[⊥]] = Q

[[A(B]] = [[A]]× [[B]]

[[!A]] = Mfin([[A]])

where Mfin(A) is the set of finite multisets of elements of [[A]].

As a consequence,

[[A⇒ B]] = Mfin([[A]])× [[B]]

It is some collection (with multiplicities) of elements of [[A]] producing an
element of [[B]].

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 61 / 83

Intersection types and relational interpretations

Consider again the typing

a : (q0 ∧ q1)→ q2 → q :: ⊥ → ⊥ → ⊥

In the relational model:

[[a]] ⊆Mfin(Q)×Mfin(Q)× Q

and this example translates as

([q0, q1], ([q2], q)) ∈ [[a]]

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 62 / 83

An example of interpretation

Consider the rule
F x y = a (a x y) (a x x)

which corresponds to

λx

λy

a

a

xx

a

yx

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 63 / 83

An example of interpretation

and suppose that A may run as follows on the tree:

λx

λy

a q0

a

xx

a

yx

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 64 / 83

An example of interpretation

and suppose that A may run as follows on the tree:

λx

λy

a q0

a q1

xx

a q0

yx

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 65 / 83

An example of interpretation

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

Then this rule will be interpreted in the model as

([q0, q1, q1], [q1], q0)

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 66 / 83

An example of interpretation

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

Then this rule will be interpreted in the model as

([q0, q1, q1], [q1], q0)

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 66 / 83

Relational interpretation and automata acceptance

A tree over a ranked alphabet Σ = {a1 : i1, · · · , an : in} is interpreted as
a λ-term

λa1 · · · λan. t

with t :: ⊥ in normal form.

This is the Girard-Reynolds interpretation of trees.

So, in the model, a term building a Σ-tree is interpreted as a subset of

Mfin([[a1]])× · · · ×Mfin([[an]])× Q

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 67 / 83

Relational interpretation and automata acceptance

A tree over a ranked alphabet Σ = {a1 : i1, · · · , an : in} is interpreted as
a λ-term

λa1 · · · λan. t

with t :: ⊥ in normal form.

This is the Girard-Reynolds interpretation of trees.

So, in the model, a term building a Σ-tree is interpreted as a subset of

Mfin([[a1]])× · · · ×Mfin([[an]])× Q

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 67 / 83

Relational interpretation and automata acceptance

Theorem (G.-Melliès 2014)

Consider an alternating tree automaton A and a λ-term t reducing to a
tree T .

Then A has a run-tree over T if and only if there exists α ⊆ [[δ]] such that

α× {q0} ⊆ [[t]]

The interpretation [[δ]] of the transition function is defined as expected.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 68 / 83

Elements of proof

The proof relies on

a theorem, reformulated from Kobayashi and Ong’s original approach,
giving an equivalence between the existence of a run-tree and the
existence of a typing in an intersection type system,

on a translation theorem stating the equivalence of this type system
with a type system derived from the intuitionnistic fragment of
Bucciarelli and Ehrhard’s indexed linear logic

and on a correspondence between the typing proofs of the latter
system and the relational denotations of terms.

Hidden relation between qualitative and quantitative semantics. . .

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 69 / 83

Recursion: the fix rule

This model lacks infinite recursion, and can not interpret in general the rule

Γ ` R(F) : θ :: κ
fix

F : θ :: κ ` F : θ :: κ

Since schemes produce infinite trees, we need to shift to an infinitary
variant of Rel .

We set:

[[! A]] = Mcount([[A]])

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 70 / 83

Recursion: the fix rule

A function may now have a countable number of inputs.

This model has a coinductive fixpoint. The Theorem then extends:

Theorem (G.-Melliès 2014)

Consider an alternating tree automaton A and a λY -term t producing a
tree T .

Then A has a run-tree over T if and only if there exists α ⊆ [[δ]] such that

α× {q0} ⊆ [[t]]

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 71 / 83

Parity conditions

Kobayashi and Ong extended the typing with a colouring operation:

a : (∅ → �c2 q2 → q0) ∧ ((�c1 q1 ∧�c2 q2)→ �c0 q0 → q0)

This operation lifts to higher-order.

In this setting, t will have some type �c1 σ1 ∧�c2 σ2 → τ .

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 72 / 83

A type-system for verification (Grellois-Melliès 2014)

Axiom
x :

∧
{i} �1 θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 �m1j q1j → . . . →
∧kn

j=1 �mnj qnj → q :: ⊥ → · · · → ⊥ → ⊥

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ

App
∆ + �m1 ∆1 + . . . + �mk

∆k ` t u : θ :: κ′

Γ ` R(F) : θ :: κ
fix

F : �1 θ :: κ ` F : θ :: κ

∆ , x :
∧

i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J
λ

∆ ` λ x . t :
(∧

j∈J �mj θj

)
→ θ :: κ→ κ′

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 73 / 83

A type-system for verification (Grellois-Melliès 2014)

Axiom
x :

∧
{i} �1 θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 �m1j q1j → . . . →
∧kn

j=1 �mnj qnj → q :: ⊥ → · · · → ⊥ → ⊥

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ

App
∆ + �m1 ∆1 + . . . + �mk

∆k ` t u : θ :: κ′

Γ ` R(F) : θ :: κ
fix

F : �1 θ :: κ ` F : θ :: κ

∆ , x :
∧

i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J
λ

∆ ` λ x . t :
(∧

j∈J �mj θj

)
→ θ :: κ→ κ′

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 73 / 83

A type-system for verification (Grellois-Melliès 2014)

Axiom
x :

∧
{i} �1 θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 �m1j q1j → . . . →
∧kn

j=1 �mnj qnj → q :: ⊥ → · · · → ⊥ → ⊥

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ

App
∆ + �m1 ∆1 + . . . + �mk

∆k ` t u : θ :: κ′

Γ ` R(F) : θ :: κ
fix

F : �1 θ :: κ ` F : θ :: κ

∆ , x :
∧

i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J
λ

∆ ` λ x . t :
(∧

j∈J �mj θj

)
→ θ :: κ→ κ′

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 73 / 83

A type-system for verification (Grellois-Melliès 2014)

Axiom
x :

∧
{i} �1 θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 �m1j q1j → . . . →
∧kn

j=1 �mnj qnj → q :: ⊥ → · · · → ⊥ → ⊥

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ

App
∆ + �m1 ∆1 + . . . + �mk

∆k ` t u : θ :: κ′

Γ ` R(F) : θ :: κ
fix

F : �1 θ :: κ ` F : θ :: κ

∆ , x :
∧

i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J
λ

∆ ` λ x . t :
(∧

j∈J �mj θj

)
→ θ :: κ→ κ′

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 73 / 83

A type-system for verification (Grellois-Melliès 2014)

Axiom
x :

∧
{i} �1 θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 �m1j q1j → . . . →
∧kn

j=1 �mnj qnj → q :: ⊥ → · · · → ⊥ → ⊥

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ

App
∆ + �m1 ∆1 + . . . + �mk

∆k ` t u : θ :: κ′

Γ ` R(F) : θ :: κ
fix

F : �1 θ :: κ ` F : θ :: κ

∆ , x :
∧

i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J
λ

∆ ` λ x . t :
(∧

j∈J �mj θj

)
→ θ :: κ→ κ′

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 73 / 83

A type-system for verification: the App rule

The colouring modality updates the colours of the variables.

A key fact of this talk: parity conditions are invariant under β-reduction
and β-expansion.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 74 / 83

A type-system for verification: the App rule

The colouring modality updates the colours of the variables.

A key fact of this talk: parity conditions are invariant under β-reduction
and β-expansion.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 74 / 83

A type-system for verification (Grellois-Melliès 2014)
This type system can have infinite-depth derivations.

The parity condition over branches of run-trees may be reformulated as a
condition over infinite branches of a derivation tree.

Theorem (G.-Melliès 2014, refomulated from Kobayashi-Ong 2009)

Consider an alternating parity tree automaton A and a scheme G
producing a tree T .

Then A has a run-tree over T if and only if there exists a winning typing
tree of

Γ ` t(G) : q0 :: ⊥

where t(G) is the λ-term corresponding to G.

This reformulation comes from a game semantics perspective.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 75 / 83

A type-system for verification (Grellois-Melliès 2014)
This type system can have infinite-depth derivations.

The parity condition over branches of run-trees may be reformulated as a
condition over infinite branches of a derivation tree.

Theorem (G.-Melliès 2014, refomulated from Kobayashi-Ong 2009)

Consider an alternating parity tree automaton A and a scheme G
producing a tree T .

Then A has a run-tree over T if and only if there exists a winning typing
tree of

Γ ` t(G) : q0 :: ⊥

where t(G) is the λ-term corresponding to G.

This reformulation comes from a game semantics perspective.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 75 / 83

A type-system for verification (Grellois-Melliès 2014)
This type system can have infinite-depth derivations.

The parity condition over branches of run-trees may be reformulated as a
condition over infinite branches of a derivation tree.

Theorem (G.-Melliès 2014, refomulated from Kobayashi-Ong 2009)

Consider an alternating parity tree automaton A and a scheme G
producing a tree T .

Then A has a run-tree over T if and only if there exists a winning typing
tree of

Γ ` t(G) : q0 :: ⊥

where t(G) is the λ-term corresponding to G.

This reformulation comes from a game semantics perspective.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 75 / 83

Parity conditions

We investigated the semantic nature of �, and proved that it has good
properties — it is a parameterized comonad, which distributes over the
exponential.

This gives a new exponential .

In the model, setting

[[�A]] = Col × [[A]]

we obtain a very natural coloured interpretation of types:

[[A⇒ B]] = [[A(B]] = Mcount(Col × [[A]])× [[B]]

Again, there is a correspondence between interpretations in the model and
typings.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 76 / 83

Parity conditions

We investigated the semantic nature of �, and proved that it has good
properties — it is a parameterized comonad, which distributes over the
exponential.

This gives a new exponential .

In the model, setting

[[�A]] = Col × [[A]]

we obtain a very natural coloured interpretation of types:

[[A⇒ B]] = [[A(B]] = Mcount(Col × [[A]])× [[B]]

Again, there is a correspondence between interpretations in the model and
typings.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 76 / 83

Parity conditions

We investigated the semantic nature of �, and proved that it has good
properties — it is a parameterized comonad, which distributes over the
exponential.

This gives a new exponential .

In the model, setting

[[�A]] = Col × [[A]]

we obtain a very natural coloured interpretation of types:

[[A⇒ B]] = [[A(B]] = Mcount(Col × [[A]])× [[B]]

Again, there is a correspondence between interpretations in the model and
typings.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 76 / 83

An example of coloured interpretation

Suppose Ω(q0) = 0 and Ω(q1) = 1.

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

This rule will be interpreted in the model as

([(0, q0), (1, q1), (1, q1)], [(1, q1)], q0)

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 77 / 83

An example of coloured interpretation

Suppose Ω(q0) = 0 and Ω(q1) = 1.

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

This rule will be interpreted in the model as

([(0, q0), (1, q1), (1, q1)], [(1, q1)], q0)

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 77 / 83

Connection with the coloured relational model

To obtain the acceptance theorem for alternating parity automata, we
need a fixpoint which corresponds to the parity condition.

It can be defined as an operator Y which transports a relation

f : X ⊗ A (A

to a relation

YX ,A (f) : X (A.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 78 / 83

Connection with the coloured relational model

To obtain the acceptance theorem for alternating parity automata, we
need a fixpoint which corresponds to the parity condition.

It can be defined as an operator Y which transports a relation

f : X ⊗ A (A

to a relation

YX ,A (f) : X (A.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 78 / 83

Connection with the coloured relational model

Elements of YX ,A (f) are obtained from compositions of denotations of f .

The composition tree may be infinite; in this case, it has to be winning for
the parity condition.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 79 / 83

Connection with the coloured relational model

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 80 / 83

Connection with the coloured relational model

Note that the fixpoint operator Y may be understood as defined from the
inductive and coinductive operators over this infinitary relational model.

We obtain the general Theorem:

Theorem (G.-Melliès 2014)

Consider an alternating parity tree automaton A and a λY -term t
producing a tree T .

Then A has a winning run-tree over T if and only if there exists α ⊆ [[δ]]
such that

α× {q0} ⊆ [[t]]

where the interpretation is computed in the coloured relational model.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 81 / 83

Connection with the coloured relational model

Note that the fixpoint operator Y may be understood as defined from the
inductive and coinductive operators over this infinitary relational model.

We obtain the general Theorem:

Theorem (G.-Melliès 2014)

Consider an alternating parity tree automaton A and a λY -term t
producing a tree T .

Then A has a winning run-tree over T if and only if there exists α ⊆ [[δ]]
such that

α× {q0} ⊆ [[t]]

where the interpretation is computed in the coloured relational model.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 81 / 83

A last remark: extensional collapses

If the exponential modality ! is interpreted with finite sets, we obtain the
poset-based model of linear logic.

Ehrhard proved in 2012 that it is the extensional collapse of the relational
model.

Melliès gave a version of the previous Theorem in a variant of this
qualitative model.

We are currently adapting the extensional collapse theorem (in a
type-theoretic version) to the infinitary and coloured settings, in order to
relate these two version of the semantic model-checking theorem.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 82 / 83

A last remark: extensional collapses

If the exponential modality ! is interpreted with finite sets, we obtain the
poset-based model of linear logic.

Ehrhard proved in 2012 that it is the extensional collapse of the relational
model.

Melliès gave a version of the previous Theorem in a variant of this
qualitative model.

We are currently adapting the extensional collapse theorem (in a
type-theoretic version) to the infinitary and coloured settings, in order to
relate these two version of the semantic model-checking theorem.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 82 / 83

A last remark: extensional collapses

If the exponential modality ! is interpreted with finite sets, we obtain the
poset-based model of linear logic.

Ehrhard proved in 2012 that it is the extensional collapse of the relational
model.

Melliès gave a version of the previous Theorem in a variant of this
qualitative model.

We are currently adapting the extensional collapse theorem (in a
type-theoretic version) to the infinitary and coloured settings, in order to
relate these two version of the semantic model-checking theorem.

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 82 / 83

Conclusions and perspectives

We studied domains-based models of linear logic designed to reflect
the behaviour of alternating parity tree automata, in order to
interpret λY -terms.

In the relational case, our approach is reflected by a logic (coloured
ILL) which also gives a type system equivalent to the one of
Kobayashi and Ong.

Results of extensional collapse lead to new approaches for decidability.

There is still a lot to do: study the coloured extensional collapse,
axiomatize this extension of ”recognition by monoid”, game
semantics with parity, extend to other models of automata . . .

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 83 / 83

Conclusions and perspectives

We studied domains-based models of linear logic designed to reflect
the behaviour of alternating parity tree automata, in order to
interpret λY -terms.

In the relational case, our approach is reflected by a logic (coloured
ILL) which also gives a type system equivalent to the one of
Kobayashi and Ong.

Results of extensional collapse lead to new approaches for decidability.

There is still a lot to do: study the coloured extensional collapse,
axiomatize this extension of ”recognition by monoid”, game
semantics with parity, extend to other models of automata . . .

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 83 / 83

Conclusions and perspectives

We studied domains-based models of linear logic designed to reflect
the behaviour of alternating parity tree automata, in order to
interpret λY -terms.

In the relational case, our approach is reflected by a logic (coloured
ILL) which also gives a type system equivalent to the one of
Kobayashi and Ong.

Results of extensional collapse lead to new approaches for decidability.

There is still a lot to do: study the coloured extensional collapse,
axiomatize this extension of ”recognition by monoid”, game
semantics with parity, extend to other models of automata . . .

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 83 / 83

Conclusions and perspectives

We studied domains-based models of linear logic designed to reflect
the behaviour of alternating parity tree automata, in order to
interpret λY -terms.

In the relational case, our approach is reflected by a logic (coloured
ILL) which also gives a type system equivalent to the one of
Kobayashi and Ong.

Results of extensional collapse lead to new approaches for decidability.

There is still a lot to do: study the coloured extensional collapse,
axiomatize this extension of ”recognition by monoid”, game
semantics with parity, extend to other models of automata . . .

C. Grellois with P.-A. Melliès (PPS & LIAFA) Types, logic, verification November 24th, 2014 83 / 83

