
Introduction to higher-order verification I
Recursion schemes and terms

Charles Grellois

PPS & LIALA — Université Paris 7

GdT Sémantique et Vérification – November 27th, 2014

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 1 / 69

Overview

1 Motivations of this group

2 Higher-order recursion schemes

3 λ-terms and recursion

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 2 / 69

Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model of a program

Specify a property in an appropriate logic

Make them interact in order to determine whether the program
satisfies the property.

Interaction is often realized by translating the formula into an equivalent
automaton, which then runs over the model.

Need to balance expressivity vs. complexity in the choice of the model and
of the logic.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 3 / 69

Model-checking higher-order programs

Lunctional languages (such as C++, Haskell, OCaML, Javascript, Python,
or Scala) allow and encourage the use of higher-order functions.

Informally, these are functions which can take a function as input:

compose φ x = φ(φ(x))

map f l applies the function f to every element of the list l

It is a real challenge for verification, as it needs models with recursion of
higher-order.

Higher-order recursion schemes (HORS) allow to abstract such programs
and precisely model their higher-order behaviour.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 4 / 69

Model-checking higher-order programs

Lunctional languages (such as C++, Haskell, OCaML, Javascript, Python,
or Scala) allow and encourage the use of higher-order functions.

Informally, these are functions which can take a function as input:

compose φ x = φ(φ(x))

map f l applies the function f to every element of the list l

It is a real challenge for verification, as it needs models with recursion of
higher-order.

Higher-order recursion schemes (HORS) allow to abstract such programs
and precisely model their higher-order behaviour.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 4 / 69

Model-checking higher-order programs

Verification met semantics with Ong’s decidability result (2006):

“It is decidable whether a given MSO formula holds
at the root of the value tree of a higher-order recursion scheme”

which relies on a semantic analysis of the model

A first motivation of this group: in two weeks, you will understand this
statement !

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 5 / 69

Model-checking higher-order programs

Verification met semantics with Ong’s decidability result (2006):

“It is decidable whether a given MSO formula holds
at the root of the value tree of a higher-order recursion scheme”

which relies on a semantic analysis of the model

A first motivation of this group: in two weeks, you will understand this
statement !

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 5 / 69

Model-checking higher-order programs

More generally, this result – and its proof – were the starting point of
many semantic investigations of higher-order and its relations with
automata theory:

Ong 2006 (game semantics)

Hague-Murawski-Ong-Serre 2008 (game semantics, higher-order
pushdown automata)

Kobayashi-Ong 2009 (intersection types)

Salvati-Walukiewicz (interpretation in finite models)

Grellois-Melliès (interpretation in models of linear logic, and in
associated type systems)

A motivation of this group is to understand these approaches and how
they relate.

Of course, we are more generally interested in every potential meeting
point for our communities.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 6 / 69

Model-checking higher-order programs

More generally, this result – and its proof – were the starting point of
many semantic investigations of higher-order and its relations with
automata theory:

Ong 2006 (game semantics)

Hague-Murawski-Ong-Serre 2008 (game semantics, higher-order
pushdown automata)

Kobayashi-Ong 2009 (intersection types)

Salvati-Walukiewicz (interpretation in finite models)

Grellois-Melliès (interpretation in models of linear logic, and in
associated type systems)

A motivation of this group is to understand these approaches and how
they relate.

Of course, we are more generally interested in every potential meeting
point for our communities.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 6 / 69

Model-checking higher-order programs

More generally, this result – and its proof – were the starting point of
many semantic investigations of higher-order and its relations with
automata theory:

Ong 2006 (game semantics)

Hague-Murawski-Ong-Serre 2008 (game semantics, higher-order
pushdown automata)

Kobayashi-Ong 2009 (intersection types)

Salvati-Walukiewicz (interpretation in finite models)

Grellois-Melliès (interpretation in models of linear logic, and in
associated type systems)

A motivation of this group is to understand these approaches and how
they relate.

Of course, we are more generally interested in every potential meeting
point for our communities.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 6 / 69

Model-checking higher-order programs

More generally, this result – and its proof – were the starting point of
many semantic investigations of higher-order and its relations with
automata theory:

Ong 2006 (game semantics)

Hague-Murawski-Ong-Serre 2008 (game semantics, higher-order
pushdown automata)

Kobayashi-Ong 2009 (intersection types)

Salvati-Walukiewicz (interpretation in finite models)

Grellois-Melliès (interpretation in models of linear logic, and in
associated type systems)

A motivation of this group is to understand these approaches and how
they relate.

Of course, we are more generally interested in every potential meeting
point for our communities.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 6 / 69

Model-checking higher-order programs

More generally, this result – and its proof – were the starting point of
many semantic investigations of higher-order and its relations with
automata theory:

Ong 2006 (game semantics)

Hague-Murawski-Ong-Serre 2008 (game semantics, higher-order
pushdown automata)

Kobayashi-Ong 2009 (intersection types)

Salvati-Walukiewicz (interpretation in finite models)

Grellois-Melliès (interpretation in models of linear logic, and in
associated type systems)

A motivation of this group is to understand these approaches and how
they relate.

Of course, we are more generally interested in every potential meeting
point for our communities.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 6 / 69

Model-checking higher-order programs

More generally, this result – and its proof – were the starting point of
many semantic investigations of higher-order and its relations with
automata theory:

Ong 2006 (game semantics)

Hague-Murawski-Ong-Serre 2008 (game semantics, higher-order
pushdown automata)

Kobayashi-Ong 2009 (intersection types)

Salvati-Walukiewicz (interpretation in finite models)

Grellois-Melliès (interpretation in models of linear logic, and in
associated type systems)

A motivation of this group is to understand these approaches and how
they relate.

Of course, we are more generally interested in every potential meeting
point for our communities.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 6 / 69

Model-checking higher-order programs

More generally, this result – and its proof – were the starting point of
many semantic investigations of higher-order and its relations with
automata theory:

Ong 2006 (game semantics)

Hague-Murawski-Ong-Serre 2008 (game semantics, higher-order
pushdown automata)

Kobayashi-Ong 2009 (intersection types)

Salvati-Walukiewicz (interpretation in finite models)

Grellois-Melliès (interpretation in models of linear logic, and in
associated type systems)

A motivation of this group is to understand these approaches and how
they relate.

Of course, we are more generally interested in every potential meeting
point for our communities.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 6 / 69

Model-checking higher-order programs

The theoretical study of this problem also lead to the design of
model-checkers:

TRecS and GTRecS (Kobayashi et al.)

C-SHORe (Broadbent, Carayol, Hague, Serre)

Preface (Ramsay, Neatherway, Ong)

others ??

It would be nice to have some talks about practical aspects too. In
particular, how do we abstract a program into a recursion scheme in
practice ? How helpful is the theoretical understanding of the problem in
the implementation of a model-checker ?

Note that none of these model-checkers (to my knowledge) checks the
whole MSO logic.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 7 / 69

Model-checking higher-order programs

The theoretical study of this problem also lead to the design of
model-checkers:

TRecS and GTRecS (Kobayashi et al.)

C-SHORe (Broadbent, Carayol, Hague, Serre)

Preface (Ramsay, Neatherway, Ong)

others ??

It would be nice to have some talks about practical aspects too. In
particular, how do we abstract a program into a recursion scheme in
practice ? How helpful is the theoretical understanding of the problem in
the implementation of a model-checker ?

Note that none of these model-checkers (to my knowledge) checks the
whole MSO logic.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 7 / 69

Model-checking higher-order programs

The theoretical study of this problem also lead to the design of
model-checkers:

TRecS and GTRecS (Kobayashi et al.)

C-SHORe (Broadbent, Carayol, Hague, Serre)

Preface (Ramsay, Neatherway, Ong)

others ??

It would be nice to have some talks about practical aspects too. In
particular, how do we abstract a program into a recursion scheme in
practice ? How helpful is the theoretical understanding of the problem in
the implementation of a model-checker ?

Note that none of these model-checkers (to my knowledge) checks the
whole MSO logic.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 7 / 69

Model-checking higher-order programs

The theoretical study of this problem also lead to the design of
model-checkers:

TRecS and GTRecS (Kobayashi et al.)

C-SHORe (Broadbent, Carayol, Hague, Serre)

Preface (Ramsay, Neatherway, Ong)

others ??

It would be nice to have some talks about practical aspects too. In
particular, how do we abstract a program into a recursion scheme in
practice ? How helpful is the theoretical understanding of the problem in
the implementation of a model-checker ?

Note that none of these model-checkers (to my knowledge) checks the
whole MSO logic.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 7 / 69

Practical aspects

A meeting every two weeks or so

On Thursdays at 16:00, in room 3052

There will soon be a website (for slides, dates,. . .)
and a mailing list

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 8 / 69

Practical aspects

A meeting every two weeks or so

On Thursdays at 16:00, in room 3052

There will soon be a website (for slides, dates,. . .)
and a mailing list

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 8 / 69

Practical aspects

To start: two introductory talks — their aim is to fix a common set of
concepts and definitions which will not need to be recasted at every
talk

The goal is that everyone understands this common basis of
knowledge, so please interrupt this talk everytime you need it !

Then, from January, ”normal” talks will start.

This group is intended for discussion: interrupting talks with
questions will be encouraged in general

Please contact us if you want to talk ! We are opened to a wide
variety of subjects, as soon as they are a meeting point for our
communities.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 9 / 69

Practical aspects

To start: two introductory talks — their aim is to fix a common set of
concepts and definitions which will not need to be recasted at every
talk

The goal is that everyone understands this common basis of
knowledge, so please interrupt this talk everytime you need it !

Then, from January, ”normal” talks will start.

This group is intended for discussion: interrupting talks with
questions will be encouraged in general

Please contact us if you want to talk ! We are opened to a wide
variety of subjects, as soon as they are a meeting point for our
communities.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 9 / 69

Practical aspects

To start: two introductory talks — their aim is to fix a common set of
concepts and definitions which will not need to be recasted at every
talk

The goal is that everyone understands this common basis of
knowledge, so please interrupt this talk everytime you need it !

Then, from January, ”normal” talks will start.

This group is intended for discussion: interrupting talks with
questions will be encouraged in general

Please contact us if you want to talk ! We are opened to a wide
variety of subjects, as soon as they are a meeting point for our
communities.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 9 / 69

Overview

1 Motivations of this group

2 Higher-order recursion schemes

3 λ-terms and recursion

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 10 / 69

Higher-order recursion schemes

Idea: it is a kind of grammar whose parameters may be functions
and which generates trees.

It is a model which does not interpret conditionals, but generates a tree of
all possible behaviours of a program.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 11 / 69

A very simple functional program

At first, a recursion scheme looks like a grammar:

S = L Nil

L x = if x (L (data x)

It produces a tree by substitution, starting from the axiom S .

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 12 / 69

A very simple functional program

At first, a recursion scheme looks like a grammar:

S = L Nil

L x = if x (L (data x)

It produces a tree by substitution, starting from the axiom S .

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 12 / 69

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

S

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 13 / 69

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

S =⇒
L

Nil

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 14 / 69

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

L

Nil

=⇒

if

L

data

Nil

Nil

Notice that substitution and expansion occur in one same step.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 15 / 69

Value tree of a recursion scheme
S = L Nil

L x = if x (L (data x)
generates:

if

L

data

Nil

Nil

=⇒

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 16 / 69

Value tree of a recursion scheme

if

if

if

...data

data

Nil

data

Nil

Nil

Important remark: this scheme is very simple, yet it produces a tree which
is not regular (it does not have a finite number of subtrees).

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 17 / 69

Value tree of a recursion scheme

if

if

if

...data

data

Nil

data

Nil

Nil

Important remark: this scheme is very simple, yet it produces a tree which
is not regular (it does not have a finite number of subtrees).

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 17 / 69

Recursion schemes: formal definition

We shall define:

types (as they constraint rules and trees),

trees (as they are produced by schemes),

terms (as they appear in the rewriting rules),

recursion schemes,

the rewriting relation induced by a recursion scheme,

and the value tree of a recursion scheme.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 18 / 69

Simple types (or kinds)

Kinds are generated by the grammar

κ ::= ⊥ | κ→ κ.

By convention, the arrow associates to the right, so every kind may be
written

κ = κ1 → · · · → κn → ⊥

with n called the arity of κ.

The order order(κ) of κ is defined as 0 if n = 0 and as
1 + max(order(κ1), . . . , order(κn)) otherwise.

The set of all kinds is denoted K.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 19 / 69

Simple types (or kinds) — terminology

The word kind was proposed by Kobayashi and Ong in their 2009 article
on intersection types for verification.

Its purpose is to easily distinguish from types, which they intend as
intersection types.

In the sequel, we will try to use the term kind, but will probably sometimes
say simple type as well.

(these types and this approach will be the subject of another talk)

Also, ⊥ is often denoted by o. We will understand this “notation” when
we come to linear logic.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 20 / 69

Simple types (or kinds) — terminology

The word kind was proposed by Kobayashi and Ong in their 2009 article
on intersection types for verification.

Its purpose is to easily distinguish from types, which they intend as
intersection types.

In the sequel, we will try to use the term kind, but will probably sometimes
say simple type as well.

(these types and this approach will be the subject of another talk)

Also, ⊥ is often denoted by o. We will understand this “notation” when
we come to linear logic.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 20 / 69

Simple types (or kinds) — examples

The kind

⊥ → (⊥ → (⊥ → ⊥))

(as formed by the grammar) is also denoted

⊥ → ⊥ → ⊥ → ⊥

by associativity to the right.

So, its arity is 3.

What about its order ?

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 21 / 69

Simple types (or kinds) — examples

The kind

⊥ → (⊥ → (⊥ → ⊥))

(as formed by the grammar) is also denoted

⊥ → ⊥ → ⊥ → ⊥

by associativity to the right.

So, its arity is 3.

What about its order ?

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 21 / 69

Simple types (or kinds) — examples

The kind

⊥ → (⊥ → (⊥ → ⊥))

(as formed by the grammar) is also denoted

⊥ → ⊥ → ⊥ → ⊥

by associativity to the right.

So, its arity is 3.

What about its order ?

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 21 / 69

Simple types (or kinds) — examples

⊥ → ⊥ → ⊥ → ⊥

Recall the definition of the order of a kind κ = κ1 → · · · → κn → ⊥:

The order order(κ) of κ is defined as 0 if n = 0 and as
1 + max(order(κ1), . . . , order(κn)) otherwise.

So its order is

1 + max(order(⊥), order(⊥), order(⊥))

= 1 + max(0, 0, 0)

= 1

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 22 / 69

Simple types (or kinds) — examples

⊥ → ⊥ → ⊥ → ⊥

Recall the definition of the order of a kind κ = κ1 → · · · → κn → ⊥:

The order order(κ) of κ is defined as 0 if n = 0 and as
1 + max(order(κ1), . . . , order(κn)) otherwise.

So its order is

1 + max(order(⊥), order(⊥), order(⊥))

= 1 + max(0, 0, 0)

= 1

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 22 / 69

Simple types (or kinds) — examples

⊥ → ⊥ → ⊥ → ⊥

Recall the definition of the order of a kind κ = κ1 → · · · → κn → ⊥:

The order order(κ) of κ is defined as 0 if n = 0 and as
1 + max(order(κ1), . . . , order(κn)) otherwise.

So its order is

1 + max(order(⊥), order(⊥), order(⊥))

= 1 + max(0, 0, 0)

= 1

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 22 / 69

Simple types (or kinds) — examples

The kind

κ = ((⊥ →(⊥ → ⊥)→ ⊥

can not be “simplified” by associativity to the right.

So, its arity is 1.

Its order is

order(κ) = 1 + order ((⊥ → ⊥)→ ⊥)
= 1 + 1 + order(⊥ → ⊥)
= 1 + 1 + 1 + order(⊥)
= 1 + 1 + 1 + 0
= 3

Informally, the order measures the nesting of a type.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 23 / 69

Simple types (or kinds) — examples

The kind

κ = ((⊥ →(⊥ → ⊥)→ ⊥

can not be “simplified” by associativity to the right.

So, its arity is 1.

Its order is

order(κ) = 1 + order ((⊥ → ⊥)→ ⊥)
= 1 + 1 + order(⊥ → ⊥)
= 1 + 1 + 1 + order(⊥)
= 1 + 1 + 1 + 0
= 3

Informally, the order measures the nesting of a type.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 23 / 69

Simple types (or kinds) — examples

The kind

κ = ((⊥ →(⊥ → ⊥)→ ⊥

can not be “simplified” by associativity to the right.

So, its arity is 1.

Its order is

order(κ) = 1 + order ((⊥ → ⊥)→ ⊥)
= 1 + 1 + order(⊥ → ⊥)
= 1 + 1 + 1 + order(⊥)
= 1 + 1 + 1 + 0
= 3

Informally, the order measures the nesting of a type.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 23 / 69

Simple types (or kinds) — examples

The kind

κ = ((⊥ →(⊥ → ⊥)→ ⊥

can not be “simplified” by associativity to the right.

So, its arity is 1.

Its order is

order(κ) = 1 + order ((⊥ → ⊥)→ ⊥)
= 1 + 1 + order(⊥ → ⊥)
= 1 + 1 + 1 + order(⊥)
= 1 + 1 + 1 + 0
= 3

Informally, the order measures the nesting of a type.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 23 / 69

Trees: signatures

We call signature or ranked alphabet a set Σ of constructors together with
a function ar : Σ→ N defining the arity of the constructors of the
signature.

The arity of a constructor f ∈ Σ may be seen as a kind kind(f) defined as
the kind

⊥ → · · · → ⊥ → ⊥

of arity ar(f).

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 24 / 69

Trees

Recursion schemes produce labelled ranked trees.

A Σ-labelled (ranked) tree is defined as a function t : Dom(t)→ Σ with
Dom(t) ⊆ N∗ a prefix-closed set of finite words on natural numbers,
satisfying the following property:

∀α ∈ Dom(t), {i | α · i ∈ Dom(t)} = {1, . . . , ar(t(α))}

When this last condition is relaxed, the tree is called unranked – the
run-trees of alternating automata will be unranked, as we will see during
the next talk.

A branch b = i0 · · · in · · · of a tree t is a finite or countable sequence of
integers whose prefixes i0 · · · in are all in Dom(t), and which, if finite, ends
on a nullary node: ar(t(i0 · · · in)) = 0.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 25 / 69

Trees

Recursion schemes produce labelled ranked trees.

A Σ-labelled (ranked) tree is defined as a function t : Dom(t)→ Σ with
Dom(t) ⊆ N∗ a prefix-closed set of finite words on natural numbers,
satisfying the following property:

∀α ∈ Dom(t), {i | α · i ∈ Dom(t)} = {1, . . . , ar(t(α))}

When this last condition is relaxed, the tree is called unranked – the
run-trees of alternating automata will be unranked, as we will see during
the next talk.

A branch b = i0 · · · in · · · of a tree t is a finite or countable sequence of
integers whose prefixes i0 · · · in are all in Dom(t), and which, if finite, ends
on a nullary node: ar(t(i0 · · · in)) = 0.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 25 / 69

Trees

Recursion schemes produce labelled ranked trees.

A Σ-labelled (ranked) tree is defined as a function t : Dom(t)→ Σ with
Dom(t) ⊆ N∗ a prefix-closed set of finite words on natural numbers,
satisfying the following property:

∀α ∈ Dom(t), {i | α · i ∈ Dom(t)} = {1, . . . , ar(t(α))}

When this last condition is relaxed, the tree is called unranked – the
run-trees of alternating automata will be unranked, as we will see during
the next talk.

A branch b = i0 · · · in · · · of a tree t is a finite or countable sequence of
integers whose prefixes i0 · · · in are all in Dom(t), and which, if finite, ends
on a nullary node: ar(t(i0 · · · in)) = 0.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 25 / 69

Trees

Recursion schemes produce labelled ranked trees.

A Σ-labelled (ranked) tree is defined as a function t : Dom(t)→ Σ with
Dom(t) ⊆ N∗ a prefix-closed set of finite words on natural numbers,
satisfying the following property:

∀α ∈ Dom(t), {i | α · i ∈ Dom(t)} = {1, . . . , ar(t(α))}

When this last condition is relaxed, the tree is called unranked – the
run-trees of alternating automata will be unranked, as we will see during
the next talk.

A branch b = i0 · · · in · · · of a tree t is a finite or countable sequence of
integers whose prefixes i0 · · · in are all in Dom(t), and which, if finite, ends
on a nullary node: ar(t(i0 · · · in)) = 0.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 25 / 69

Trees

Recursion schemes produce labelled ranked trees.

A Σ-labelled (ranked) tree is defined as a function t : Dom(t)→ Σ with
Dom(t) ⊆ N∗ a prefix-closed set of finite words on natural numbers,
satisfying the following property:

∀α ∈ Dom(t), {i | α · i ∈ Dom(t)} = {1, . . . , ar(t(α))}

When this last condition is relaxed, the tree is called unranked – the
run-trees of alternating automata will be unranked, as we will see during
the next talk.

A branch b = i0 · · · in · · · of a tree t is a finite or countable sequence of
integers whose prefixes i0 · · · in are all in Dom(t), and which, if finite, ends
on a nullary node: ar(t(i0 · · · in)) = 0.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 25 / 69

Terms

Recall the example scheme:

S = L Nil

L x = if x (L (data x)

We may currify rules, and obtain equivalently

S = L Nil

L = λx . if x (L (data x)

where λx . is a notation expressing the fact that x is a variable which will
be given as argument to the non-terminal L.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 26 / 69

Terms

More generally, a rule

L f x y = t

will be written as

L = λf . λx . λy . t

meaning that L takes three arguments, the first one being denoted f in the
term t, the second one x and the third one y .

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 27 / 69

Well-kinded terms

Consider a set of variables V, a set of constants C and a function
kind : V ∪ C → K.

The set of well-kinded terms Λ(V, C) is defined inductively:

x ∈ V is a term of kind kind(x),

c ∈ C is a term of kind kind(c),

if t is a term of kind κ and x ∈ V, λx . t is a term of kind kind(x)→ κ,

if t1 is a term of kind κ→ κ′ and t2 is a term of kind κ, t1 t2 is a
term of kind κ′.

We extend the function kind to well-kinded terms accordingly.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 28 / 69

Well-kinded terms – example

Is the term

λx . if x (L (data x)

well-kinded ? If so, what is its kind ?

We need first to give kinds to the variables x and L, and to the constants
if and data.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 29 / 69

Well-kinded terms – example

Is the term

λx . if x (L (data x)

well-kinded ? If so, what is its kind ?

We need first to give kinds to the variables x and L, and to the constants
if and data.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 29 / 69

Well-kinded terms – example

λx . if x (L (data x)

kind(x) = ⊥
kind(L) = ⊥ → ⊥
kind(if) = ⊥ → ⊥ → ⊥
kind(data) = ⊥ → ⊥

So that:

kind(data x) = ⊥
kind(L (data x)) = ⊥
kind(if x (L (data x))) = ⊥
kind(λx . if x (L (data x))) = ⊥ → ⊥

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 30 / 69

Well-kinded terms – example

λx . if x (L (data x)

kind(x) = ⊥
kind(L) = ⊥ → ⊥
kind(if) = ⊥ → ⊥ → ⊥
kind(data) = ⊥ → ⊥

So that:

kind(data x) = ⊥
kind(L (data x)) = ⊥
kind(if x (L (data x))) = ⊥
kind(λx . if x (L (data x))) = ⊥ → ⊥

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 30 / 69

Well-kinded terms – example

λx . if x (L (data x)

kind(x) = ⊥
kind(L) = ⊥ → ⊥
kind(if) = ⊥ → ⊥ → ⊥
kind(data) = ⊥ → ⊥

So that:

kind(data x) = ⊥
kind(L (data x)) = ⊥
kind(if x (L (data x))) = ⊥
kind(λx . if x (L (data x))) = ⊥ → ⊥

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 30 / 69

Well-kinded terms – example

λx . if x (L (data x)

kind(x) = ⊥
kind(L) = ⊥ → ⊥
kind(if) = ⊥ → ⊥ → ⊥
kind(data) = ⊥ → ⊥

So that:

kind(data x) = ⊥
kind(L (data x)) = ⊥
kind(if x (L (data x))) = ⊥
kind(λx . if x (L (data x))) = ⊥ → ⊥

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 30 / 69

Well-kinded terms – example

λx . if x (L (data x)

kind(x) = ⊥
kind(L) = ⊥ → ⊥
kind(if) = ⊥ → ⊥ → ⊥
kind(data) = ⊥ → ⊥

So that:

kind(data x) = ⊥
kind(L (data x)) = ⊥
kind(if x (L (data x))) = ⊥
kind(λx . if x (L (data x))) = ⊥ → ⊥

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 30 / 69

Well-kinded terms – example

Consider a rule

L = λx . if x (L (data x)

Since

kind(λx . if x (L (data x))) = ⊥ → ⊥

it is natural to ask that kind(L) = ⊥ → ⊥.

(in the example we gave, it was automatic since L itself was playing the
role of L).

Moreover, this kind has order 1.
This will be the order of this rewriting rule.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 31 / 69

Well-kinded terms – example

Consider a rule

L = λx . if x (L (data x)

Since

kind(λx . if x (L (data x))) = ⊥ → ⊥

it is natural to ask that kind(L) = ⊥ → ⊥.

(in the example we gave, it was automatic since L itself was playing the
role of L).

Moreover, this kind has order 1.
This will be the order of this rewriting rule.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 31 / 69

Recursion schemes

Consider a set of variables V and a function kind : V → K. A higher-order
recursion scheme G = 〈Σ,N ,R,S〉 consists of

a signature Σ,

a finite set N of non-terminals with a function kind : N → K,

a function R : N → Λ(V,N ∪ Σ) such that, for every L ∈ N , R(L)
is of the form λx1 · · ·λxn. t, where t is a term without abstractions of
kind ⊥ and which does not contain S , and such that
kind(L) = kind(R(L)),

and of S ∈ N of kind ⊥ called its axiom.

The order of G is max ({order(kind(L)) | L ∈ N}).

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 32 / 69

Recursion schemes

Consider a set of variables V and a function kind : V → K. A higher-order
recursion scheme G = 〈Σ,N ,R,S〉 consists of

a signature Σ,

a finite set N of non-terminals with a function kind : N → K,

a function R : N → Λ(V,N ∪ Σ) such that, for every L ∈ N , R(L)
is of the form λx1 · · ·λxn. t, where t is a term without abstractions of
kind ⊥ and which does not contain S , and such that
kind(L) = kind(R(L)),

and of S ∈ N of kind ⊥ called its axiom.

The order of G is max ({order(kind(L)) | L ∈ N}).

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 32 / 69

Order of a recursion schemes

Considering the signature

Σ = {if : 2, data : 1, Nil : 0}

the following set of rules defines a recursion scheme:

S = L Nil

L = λx . if x (L (data x)

The order of S is 0, the one of L is 1.

So that this recursion scheme is of order 1.
It is why we said it was a very simple one.

Order can be understood as a good measure of the rewriting complexity of
a recursion scheme.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 33 / 69

Order of a recursion schemes

Considering the signature

Σ = {if : 2, data : 1, Nil : 0}

the following set of rules defines a recursion scheme:

S = L Nil

L = λx . if x (L (data x)

The order of S is 0, the one of L is 1.

So that this recursion scheme is of order 1.
It is why we said it was a very simple one.

Order can be understood as a good measure of the rewriting complexity of
a recursion scheme.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 33 / 69

Another recursion scheme

An example from Serre et al.:

S = M Nil

M = λx . if (commit x) (A x M)
A = λy . λφ. if (φ (error end)) (φ (cons y))

with

Σ = {Nil : 0, if : 2, commit : 1, error : 1, end : 0, cons : 1}

Exercise: check that terms are well-kinded and compute the order of the
scheme.

The answer is that the order is 2.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 34 / 69

Another recursion scheme

An example from Serre et al.:

S = M Nil

M = λx . if (commit x) (A x M)
A = λy . λφ. if (φ (error end)) (φ (cons y))

with

Σ = {Nil : 0, if : 2, commit : 1, error : 1, end : 0, cons : 1}

Exercise: check that terms are well-kinded and compute the order of the
scheme.

The answer is that the order is 2.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 34 / 69

Value tree of a recursion scheme

S = M Nil

M x = if (commit x) (A x M)
A y φ = if (φ (error end)) (φ (cons y))

M

Nil

=⇒

if

A

MNil

commit

Nil

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 35 / 69

Value tree of a recursion scheme
S = M Nil

M x = if (commit x) (A x M)
A y φ = if (φ (error end)) (φ (cons y))

if

A

MNil

commit

Nil

=⇒

if

if

M

cons

Nil

M

error

end

commit

Nil

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 36 / 69

Value tree of a recursion scheme
S = M Nil

M x = if (commit x) (A x M)
A y φ = if (φ (error end)) (φ (cons y))

if

if

M

cons

Nil

M

error

end

commit

Nil =⇒

if

if

M

cons

Nil

if

A

Merror

end

commit

error

end

commit

Nil

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 37 / 69

Rewriting relation over recursion schemes

To define formally the value tree of a recursion scheme, we need to define
how it rewrites.

We define inductively the rewriting relation →G over terms by:

L t1 · · · tn →G t[xi := ti] if R(L) = λx1 · · ·λxn. t,

if s →G t then s u →G t u and u s →G u t.

Informally, recall that a rule

L = λx . λy . t

means that L takes two arguments, that the first one is denoted x in the
term t, and the second one is denoted y .

So, in order to evaluate an application L u v , we need to substitute the
variable x with the term u, and the variable y with the term v .

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 38 / 69

Rewriting relation over recursion schemes

To define formally the value tree of a recursion scheme, we need to define
how it rewrites.

We define inductively the rewriting relation →G over terms by:

L t1 · · · tn →G t[xi := ti] if R(L) = λx1 · · ·λxn. t,

if s →G t then s u →G t u and u s →G u t.

Informally, recall that a rule

L = λx . λy . t

means that L takes two arguments, that the first one is denoted x in the
term t, and the second one is denoted y .

So, in order to evaluate an application L u v , we need to substitute the
variable x with the term u, and the variable y with the term v .

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 38 / 69

Rewriting relation over recursion schemes

To define formally the value tree of a recursion scheme, we need to define
how it rewrites.

We define inductively the rewriting relation →G over terms by:

L t1 · · · tn →G t[xi := ti] if R(L) = λx1 · · ·λxn. t,

if s →G t then s u →G t u and u s →G u t.

Informally, recall that a rule

L = λx . λy . t

means that L takes two arguments, that the first one is denoted x in the
term t, and the second one is denoted y .

So, in order to evaluate an application L u v , we need to substitute the
variable x with the term u, and the variable y with the term v .

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 38 / 69

Divergence

Consider a recursion scheme

S = K c
K = λx .K (K x)

It rewrites as

S

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 39 / 69

Divergence

Consider a recursion scheme

S = K c
K = λx .K (K x)

It rewrites as

S

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 39 / 69

Divergence

Consider a recursion scheme

S = K c
K = λx .K (K x)

It rewrites as

S →G K c

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 40 / 69

Divergence

Consider a recursion scheme

S = K c
K = λx .K (K x)

It rewrites as

S →G K c →G K (K c)

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 41 / 69

Divergence

Consider a recursion scheme

S = K c
K = λx .K (K x)

It rewrites as

S →G K c →G K (K c)→G K (K (K c))

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 42 / 69

Divergence

Consider a recursion scheme

S = K c
K = λx .K (K x)

It rewrites as

S →G K c →G K (K c)→G K (K (K c))→G . . .

which never outputs a symbol at its head and thus “never produces
anything”.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 43 / 69

Divergence

Lor this reason, we add a new symbol for divergence.

People from the verification community denote it ⊥. It is fine for them, as
they would give it the kind o.

In semantics, this is the Ω of Böhm trees – in this framework, it always
has simple type ⊥.

In this talk, I will use ⊥, since it will be clear that it does not represent a
kind.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 44 / 69

Divergence

Lor this reason, we add a new symbol for divergence.

People from the verification community denote it ⊥. It is fine for them, as
they would give it the kind o.

In semantics, this is the Ω of Böhm trees – in this framework, it always
has simple type ⊥.

In this talk, I will use ⊥, since it will be clear that it does not represent a
kind.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 44 / 69

Evaluation policies
So far, we only considered schemes in which there was only one rewritable
non-terminal at the same time.

However, consider a rule

L = λx . λy . a (K x) (J y)

An example of rewriting:

L b c →G

a

J

c

K

b

Which non-terminal should we rewrite first ?
It is not very important in this case, as no rewriting of a non-terminal
affects the other.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 45 / 69

Evaluation policies
So far, we only considered schemes in which there was only one rewritable
non-terminal at the same time.

However, consider a rule

L = λx . λy . a (K x) (J y)

An example of rewriting:

L b c →G

a

J

c

K

b

Which non-terminal should we rewrite first ?
It is not very important in this case, as no rewriting of a non-terminal
affects the other.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 45 / 69

Evaluation policies
So far, we only considered schemes in which there was only one rewritable
non-terminal at the same time.

However, consider a rule

L = λx . λy . a (K x) (J y)

An example of rewriting:

L b c →G

a

J

c

K

b

Which non-terminal should we rewrite first ?
It is not very important in this case, as no rewriting of a non-terminal
affects the other.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 45 / 69

Evaluation policies

Consider now the rules

S = J (K c)
K = λx .(K (K x))
J = λy . c

Which non-terminal should we rewrite first ?

S →G

J

K

c

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 46 / 69

Evaluation policies

Consider now the rules

S = J (K c)
K = λx .(K (K x))
J = λy . c

Which non-terminal should we rewrite first ?

S →G

J

K

c

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 46 / 69

Evaluation policies

Consider now the rules

S = J (K c)
K = λx .(K (K x))
J = λy . c

If we rewrite J:

J

K

c

→G c

and the evaluation is finished.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 47 / 69

Evaluation policies
Consider now the rules

S = J (K c)
K = λx .(K (K x))
J = λy . c

If we rewrite K :

J

K

c

→G

J

K

K

c

and we have the same choice again.
Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 48 / 69

Evaluation policies

J

K

c

→G

J

K

K

c

In case we always rewrite K (innermost strategy), the rewriting diverges
and produces ⊥.

Lor more about this, see

Axel Haddad, IO vs OI in Higher-Order Recursion Schemes

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 49 / 69

Evaluation policies

J

K

c

→G

J

K

K

c

In case we always rewrite K (innermost strategy), the rewriting diverges
and produces ⊥.

Lor more about this, see

Axel Haddad, IO vs OI in Higher-Order Recursion Schemes

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 49 / 69

Value tree of a recursion scheme

We want to define the value tree [[G]] of the scheme as the one obtained
by the “most productive reduction”.

The definition is order-theoretical, and hides this notion of reduction.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 50 / 69

Value tree of a recursion scheme

Given a term of Λ(V,N ∪ Σ), define t⊥ by induction as follows:

a⊥ = a for every a ∈ Σ

(t1 t2)⊥ = (t1)⊥ (t2)⊥ if (t1)⊥ 6= ⊥
in every other case, t⊥ = ⊥

Roughly speaking, seeing t as a tree, t⊥ is obtained from t by replacing
every non-terminal by ⊥ and removing the subtree that was rooted on this
non-terminal.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 51 / 69

Value tree of a recursion scheme

Consider for example

a

J

c

K

b

The erasing operation (·)⊥ maps it to

a

⊥⊥

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 52 / 69

Value tree of a recursion scheme

if

if

L

data

data

Nil

data

Nil

Nil

(·)⊥7−−→

if

if

⊥data

Nil

Nil

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 53 / 69

Value tree of a recursion scheme

Define the order 4 over Σ] {⊥} by

∀a ∈ Σ ⊥ 4 a

and generalize it to (Σ] {⊥})-labelled ranked trees as follows: t 4 t ′ iff
Dom(t) ⊆ Dom(t ′) and

∀w ∈ Dom(t) t(w) 4 t(w ′)

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 54 / 69

Value tree of a recursion scheme

if

if

⊥data

Nil

Nil

4

if

if

if

⊥data

data

Nil

data

Nil

Nil

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 55 / 69

Value tree of a recursion scheme

The resulting order is a dcpo (directed complete partial order).

Indeed, any non-empty set D of (Σ] {⊥})-labelled ranked trees such that

∀t, u ∈ D ∃v ∈ D t 4 v and u 4 v

has a supremum denoted
∨
D.

Such a set is called a directed set.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 56 / 69

Value tree of a recursion scheme

Given a scheme G, its value tree [[G]] is then defined as

[[G]] =
∨
{t⊥ | S →∗G t}

Exercise: check that this set is directed.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 57 / 69

Examples of recursion schemes

Exercise: compute the value tree of the following recursion scheme:

S = L c
L = λx . a (L (b x)) (b x)

Its branch language is {anbnc | n ≥ 1}.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 58 / 69

Examples of recursion schemes

Exercise: compute the value tree of the following recursion scheme:

S = L c
L = λx . a (L (b x)) (b x)

Its branch language is {anbnc | n ≥ 1}.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 58 / 69

Examples of recursion schemes

Exercise: compute the value tree of the following recursion scheme:

S = L (C b b)
L = λφ. a (L (C φ φ)) (c (φ d))
C = λφ. λψ. λx . φ (ψ x)

Its branch language is {ancb2nd | n ≥ 1}.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 59 / 69

Examples of recursion schemes

Exercise: compute the value tree of the following recursion scheme:

S = L (C b b)
L = λφ. a (L (C φ φ)) (c (φ d))
C = λφ. λψ. λx . φ (ψ x)

Its branch language is {ancb2nd | n ≥ 1}.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 59 / 69

Overview

1 Motivations of this group

2 Higher-order recursion schemes

3 λ-terms and recursion

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 60 / 69

A quick overview of λY -calculus

Let us first formalize the notion of substitution: in the following situation

(λx . t) u

we apply u as argument to the term t, which contains a variable x
depicting the argument it requires.

The application of these two terms can be understood as their interaction
– which shall result in

t[x := u]

where in t the occurences of the variable x representing its argument have
been replaced by this argument u.

(we do not talk here about free/bounded variables, . . . – this part of the
talk is more informal)

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 61 / 69

A quick overview of λY -calculus

Let us first formalize the notion of substitution: in the following situation

(λx . t) u

we apply u as argument to the term t, which contains a variable x
depicting the argument it requires.

The application of these two terms can be understood as their interaction
– which shall result in

t[x := u]

where in t the occurences of the variable x representing its argument have
been replaced by this argument u.

(we do not talk here about free/bounded variables, . . . – this part of the
talk is more informal)

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 61 / 69

A quick overview of λY -calculus

The relation which realizes this interaction is called the β-reduction.
It is defined as:

(λx . t) u →β t[x := u]

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 62 / 69

A quick overview of λY -calculus

Recall that the terms of the set Λ(V,N ∪ Σ) are

well-kinded terms

where abstractions (λ) are only defined over variables (elements of V).

If we consider instead Λ(V ∪ N ,Σ), what is the difference ?

We can form terms where non-terminals are abstracted, as

λL. λx . if x (L (data x)

which has kind

(⊥ → ⊥)→ ⊥→ ⊥

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 63 / 69

A quick overview of λY -calculus

Recall that the terms of the set Λ(V,N ∪ Σ) are

well-kinded terms

where abstractions (λ) are only defined over variables (elements of V).

If we consider instead Λ(V ∪ N ,Σ), what is the difference ?

We can form terms where non-terminals are abstracted, as

λL. λx . if x (L (data x)

which has kind

(⊥ → ⊥)→ ⊥→ ⊥

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 63 / 69

A quick overview of λY -calculus

We denote that

λL. λx . if x (L (data x) :: (⊥ → ⊥)→ ⊥→ ⊥

The notation t :: κ means that kind(t) = κ. It was introduced by
Kobayashi and Ong, again for mixing intersection types and simple types.

The relation :: can be understood as the simple typing relation.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 64 / 69

A quick overview of λY -calculus

Due to the associativity to the right over kinds, the kind

(⊥ → ⊥)→ ⊥→ ⊥

coincides with the kind

(⊥ → ⊥)→ (⊥ → ⊥)

which is of the form κ→ κ.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 65 / 69

A quick overview of λY -calculus

We add to the calculus (to the syntax of terms) a family of operators

Yκ :: (κ→ κ)→ κ

which act as fixpoint. This action is modelled by the relation δ of the
λY -calculus:

Y M →δ M (Y M)

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 66 / 69

A quick overview of λY -calculus

In our example:

Y (λL. λx . if x (L (data x)))

→δ (λL. λx . if x (L (data x))) (Y (λL. λx . if x (L (data x)))

→β λx . if x (Y (λL. λx . if x (L (data x))) (data x))

→δ · · ·

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 67 / 69

A quick overview of λY -calculus

In our example:

Y (λL. λx . if x (L (data x)))

→δ (λL. λx . if x (L (data x))) (Y (λL. λx . if x (L (data x)))

→β λx . if x (Y (λL. λx . if x (L (data x))) (data x))

→δ · · ·

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 67 / 69

A quick overview of λY -calculus

In our example:

Y (λL. λx . if x (L (data x)))

→δ (λL. λx . if x (L (data x))) (Y (λL. λx . if x (L (data x)))

→β λx . if x (Y (λL. λx . if x (L (data x))) (data x))

→δ · · ·

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 67 / 69

A quick overview of λY -calculus

In our example:

Y (λL. λx . if x (L (data x)))

→δ (λL. λx . if x (L (data x))) (Y (λL. λx . if x (L (data x)))

→β λx . if x (Y (λL. λx . if x (L (data x))) (data x))

→δ · · ·

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 67 / 69

A quick overview of λY -calculus

We obtain a correspondence between recursion schemes and the λ-calculus
with a fixpoint operator Y .

In a recursion scheme, the rewriting relation →G corresponds to a
particular class of reduction strategies of the λY -calculus where everytime
the relation of fixpoint expansion →δ, the β-reduction is applied to every
position of the term where it can be used (they are called redexes).

This is why in some talks about semantic models we will use a fixpoint
operator: in order to give a semantic account of the syntactic recursion
given by the rewriting operation of recursion schemes.

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 68 / 69

Next time. . .

The next session is on December 11th.

We will talk about logic and automata: MSO, modal µ-calculus,
alternating parity automata.

Thank you for coming !

Charles Grellois (PPS & LIALA) Recursion schemes and terms Sémantique & Vérification 69 / 69

	Motivations of this group
	Higher-order recursion schemes
	-terms and recursion

