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Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model of a program

Specify a property in an appropriate logic

Make them interact in order to determine whether the program
satisfies the property.

Interaction is often realized by translating the formula into an equivalent
automaton, which then runs over the model.
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Model-checking higher-order programs

For higher-order programs with recursion, a natural model is

higher-order recursion schemes (HORS)

which generate a tree abstracting the set of potential behaviors of a
program, and over which we want to run

alternating parity automata (APT)

in order to check whether some MSO formula holds.
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Model-checking higher-order programs
This model-checking problem is decidable:

Ong 2006 (game semantics)

Hague-Murawski-Ong-Serre 2008 (game semantics + collapsible
higher-order pushdown automata)

Kobayashi-Ong 2009 (intersection types)

Salvati-Walukiewicz 2011 (interpretation with Krivine machines)

Carayol-Serre 2012 (collapsible higher-order pushdown automata)

Tsukada-Ong 2014 (game semantics)

Salvati-Walukiewicz 2015 (interpretation in finite models)

Grellois-Melliès 2015

As we will see, the challenge is to understand how an automaton acts at
higher-order, directly on terms.

In this talk: we study of the problem at the light of the relational
semantics of linear logic.
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Higher-order recursion schemes
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A very simple functional program

Main = Listen Nil

Listen x = if end then x else Listen (data x)

With a recursion scheme we can model this program and produce its tree
of behaviours.

Note that constants are not interpreted: in particular, a recursion scheme
does not evaluate a boolean conditional if ... then ... else ...
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A very simple functional program

Main = Listen Nil

Listen x = if end then x else Listen (data x)

is modelled as a recursion scheme:

S = L Nil

L x = if x (L (data x ) )
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Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x ) )
generates:

S
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Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x ) )
generates:

S =⇒
L

Nil
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Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x ) )
generates:

L

Nil

=⇒

if

L

data

Nil

Nil

Notice that substitution and expansion occur in one same step.
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Value tree of a recursion scheme
S = L Nil

L x = if x (L (data x ) )
generates:

if

L

data

Nil

Nil

=⇒

if

if

L

data

data

Nil

data

Nil

Nil
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Value tree of a recursion scheme

if

if

if

...data

data

Nil

data

Nil

Nil

Very simple program, yet it produces a tree which is not regular. . .
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Representation of recursion schemes

The only finite representation of such a tree is actually the scheme itself
— even for this very simple, order-1 recursion scheme.

So, in order to get a decidability proof of the result, we need to analyze
the recursion scheme itself, and to predict the behaviour of the automaton
directly over it.

In the sequel, we will consider the equivalent formalism of λ-terms with a
recursion operator Y .
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Alternating tree automata

Alternating tree automata (ATA) are non-deterministic tree automata
whose transitions may duplicate or drop a subtree.

Example: δ(q0, if) = (2, q0) ∧ (2, q1).

This is reminiscent of the behavior of the exponential modality
of linear logic. . .
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Alternating tree automata

δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil
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Alternating tree automata
δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

and so on. This gives the notion of run-tree. They are unranked.
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Alternating tree automata and intersection types

A key remark (Kobayashi 2009): if δ(q, a) = (1, q0) ∧ (1, q1) ∧ (2, q2). . .

then we may consider that a has a refined intersection type

(q0 ∧ q1)⇒ q2 ⇒ q

In previous work, we studied these intersection types at the light of
indexed linear logic, and of its relational semantics.

The intersection operation acts as a uniform exponential: it duplicates
resources corresponding to the same term.
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Relational semantics
and alternating tree automata
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An inductive fixpoint in relational semantics

To interpret the recursion of schemes in the semantics, we need to
interpret the rule

! X⊗ ! A ` A
fix

! X ` A

by a suitable collection of morphisms

YX ,A : C (! X ⊗ !A , A ) −→ C (! X ,A)

X is a set of parameters (used to collect the free variables, which
correspond here to the tree constructors).

Here we focus on the case C = Rel .
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An inductive fixpoint in relational semantics

The semantics of

f : ! X ⊗ ! A ( A

can be seen as a set of tree constructors

b

an· · ·a1xm· · ·x1

We call such a tree a witness tree. If it is finite, we say that it is winning.

Then the fixpoint Y f : ! X ( A maps multisets of parameters
[y1, . . . , yk ] to elements b ∈ A such that there is a winning witness-tree
with root labelled b and multiset of leaves [y1, . . . , yk ]
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An inductive fixpoint in relational semantics

This fixpoint is “suitable”, meaning that it satisfies a series of equations
introduced by Bloom and Esik (see also Simpson and Plotkin).

These equations may be understood as

a branching version of the equations of Wilke algebras

with additional conditions on the handling of the parameters.

They come from a categorical study of the properties of usual fixpoint
operators on domains.

We obtain that Y is a Conway operator.
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Relational interpretation and automata acceptance
In the resulting model of λY -calculus, we obtain a semantic
model-checking theorem:

Theorem (G.-Melliès 2014)

Consider an alternating tree automaton A and a λY -term t reducing to
(the Church encoding of) a tree T .

Then A has a finite run-tree over T if and only if

q0 ∈ [[t]] ◦ [[δ]]

where the interpretation is computed in the relational model, the base type
(of trees) being interpreted as Q.

In other words: the dual interpretations of a term and of an automaton
interact to compute the set of accepting states of the automaton over the
tree generated by the term.
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Fixed point and alternating tree automata

A morphism f induces an alternating automaton which we run over

comb =

•
◦ •
◦ •
◦ •
◦

δ(b, •) =
∨

( (1, x1) ∧ · · · ∧ (1, xn) ∧ (2, a1) ∧ · · · ∧ (2, am))

where (([x1, · · · , xn]), [a1, · · · , am]), b) ∈ f .

Finite run-trees ⇐⇒ fixed point computations
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An infinitary model of linear logic
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An infinitary relational semantics

An infinite run-tree uses countably some elements of the signature.

We therefore need to introduce a variant of the relational semantics of
linear logic, in which objects are set of cardinality at most the reals, and
we define a new exponential modality  :

[[ A]] = Mcount([[A]])

(finite-or-countable multisets)

This comonad  satisfies the axioms of an exponential, and thus gives
immediately an infinitary model of the λ-calculus by the Kleisli
construction.
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An infinitary relational semantics

Now that we can interpret infinite trees, all we need is to change the
winning condition of witness trees.

Let us consider all witness trees as accepting. We obtain the gfp
(coinductive interpretation), mapping a morphism

f :  A ⊗  X ( A

to a morphism

Y f :  X ( A

It is again a Conway operator.
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An infinitary relational semantics

The Theorem then extends:

Theorem (G.-Melliès 2014)

Consider an alternating tree automaton A and a λY -term t producing
(the Church encoding of) a tree T .

Then A has a possibly infinite run-tree over T if and only if

q0 ∈ [[t]] ◦ [[δ]]

where the recursion operator of the λY -calculus is computed using this
coinductive fixed point operator.
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Specifying inductive and coinductive
behaviours: parity conditions
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Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.
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Alternating parity tree automata

In the APT, this inductive-coinductive policy is encoded using parity
conditions. Every state receives a colour

Ω(q) ∈ Col ⊆ N

Say that an infinite branch of a run-tree is winning iff the maximal colour
among the ones occuring infinitely often along it is even.

Say that a run-tree is winning iff all of its infinite branches are.

Then an APT has a winning run-tree over a tree T iff the root of T
satisfies the corresponding MSO formula φ.
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The coloring parametric comonad

From a study of the Kobayashi-Ong 2009 approach, we discovered that
the coloring operation behaves as a

parametric comonad

Informally, there is

a neutral color ε, corresponding to the absence of box,

and a composition mechanism which computes the maximum color of
(finitely many) boxes.

It can be incorporated to the infinitary relational model, setting

� A = Col × A

(and adding an appropriate collection of structural morphisms).
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Colored relational semantics

A distributivity law between  and � allows to consider their composition
as a new exponential.

   =  �

Elements of the semantics are now colored:

b

�c ′n an· · ·�c ′1
a1�cm xm· · ·�c1 x1

We can thus recast the parity condition on such trees. This adaptation of
the winning condition of run-trees defines an inductive-coinductive fixpoint
operator.

It is a Conway operator.
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Colored relational semantics

Theorem (G.-Melliès 2015)

Consider an alternating parity tree automaton A and a λY -term t
producing (the Church encoding of) a tree T .

Then A has a winning run-tree over T if and only if

q0 ∈ [[t]]col ◦ [[δ]]col
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A finitary colored model
of the λY -calculus
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The Scott model of linear logic

In order to get a decidability proof, we need to recast our approach in a
finitary setting.

If the exponential modality ! is interpreted with finite sets, we obtain the
poset-based model of linear logic (a.k.a. its Scott model).

Ehrhard proved in 2012 that it is the extensional collapse of the relational
model.

We could make this adaptation and obtain a new decidability proof.
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Conclusions and perspectives

The behavior of an alternating parity tree automaton can be adapted
to the semantics of the term computing the tree over which it runs.

We introduce an infinitary, colored relational semantics to interpret
winning APT run-trees.

The fixpoint operator combines inductive and coinductive
interpretations depending on the color.

Current work: relate this automata-theoretic definition of the fixpoint
with one interleaving µ and ν.

Yf = νxnµxn−1 · · · νx2 . µx1 . νx0.f (x0, . . . , xn)
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