Semantics of linear logic
and higher-order model-checking

Charles Grellois Paul-André Mellies

IRIF — Université Paris 7
FOCUS Team — INRIA & University of Bologna

University of Bologna
January 20, 2016

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 1/35

Model-checking higher-order programs

A well-known approach in verification: model-checking.

@ Construct a model M of a program
@ Specify a property ¢ in an appropriate logic
@ Interaction: the result is whether

M E
Typically: translate ¢ to an equivalent automaton running over M:

o = A,

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

2/35

Model-checking higher-order programs
For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil
Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
/\
data if
\
Nil data
\
data
\
Nil

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 3/35

Model-checking higher-order programs
For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil
Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
da(\if How to represent this tree finitely?
\
Nil data
\
data
\
Nil

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 3/35

Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) A,

corresponding to a

monadic second-order logic (MSO) formula .

(safety, liveness properties, etc)

Can we decide whether a higher-order tree satisfies a MSO formula?

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

3/35

Automata theory, typing,
and recognition by homomorphism

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checkin January 20, 2016 4 /35

A very naive model-checking problem
A simpler problem first: execution traces as finite words, properties as
finite automata.

A word of actions :

open - (read - write)? - close

A property to check: is every read immediately followed by a write ?
— automaton with two states: Q = {qo, Gread }-

go is both initial and final.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 5/ 35

A type-theoretic intuition

5(q07 read) = Qread
corresponds to the typing

read : Qread — Qo

refining the simple type

oO— O

Type of a word: a state from which it is accepted.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

6/ 35

A type-theoretic intuition: a run of the automaton

Fopen : g9 — qo F (read - Writ“e)2 -close : qo

- open - (read - write)? - close : qo

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking

A type-theoretic intuition: a run of the automaton

F write © o — Qread F read - write - close : qp

Fread : Qread — Qo F write - read - write - close : Qread

- (read - write)? - close : qo

and so on.

Typing naturally extends to terms.
Subject reduction/expansion allow some static analysis.

Let’'s do the same for recursion schemes — which compute trees.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 8 /35

Automata and recognition
Given a language L C A*,

there exists a finite automaton A recognizing L
if and only if

there exists a finite monoid M, a subset K C M

and a homomorphism ¢ : A* — M such that L = ¢~ 1(K).

Roughly speaking: there exists a finite algebraic structure in which the
language is interpreted.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

9/35

Automata and recognition

Given a language L C A*,

there exists a finite automaton A recognizing L
if and only if

there exists a finite monoid M, a subset K C M

and a homomorphism ¢ : A* — M such that L = ¢~ 1(K).

Roughly speaking: there exists a finite algebraic structure in which the
language is interpreted.

Extension to terms of this recognition by morphism, using domains
(Salvati 2009).

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

9/35

Higher-order recursion schemes

Some regularity for infinite trees

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 10 / 35

Higher-order recursion schemes

Main = Listen Nil
if end then x else Listen (data x)

Listen x

is abstracted as

g:

S = L Nil
L x = if x (L (data x))

which produces (how ?) the higher-order tree of actions

if
/\
Nl if
data :
\
Nil
Semantics of linear logic and model-checking January 20, 2016

Charles Grellois (IRIF - Bologna)

11/ 35

Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

Rewriting starts from the start symbol S:

Nil

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 12 /35

Higher-order recursion schemes

S = L Nil
g = ,
L x = if x (L (data x))
if
L Nil L
g |
Nil data
Nil

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking

Higher-order recursion schemes

S = L Nil
g = .
L x = if x (L (data x))
if
Nil if

it /N
/\ data L

Nil L \ \
| N Nil data

data ‘
‘ data

Nil \
Nil

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

12 /35

Higher-order recursion schemes

g _ S = LNl
B L x = if x (L (data x))
if
TN
Nil if
/\
data if
G = A
Nil data :
|
data
|
Nil

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

12 /35

Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

“Everything” is simply-typed, and
well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol € in one step).

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 12 /35

Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

“Everything” is simply-typed, and
well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol € in one step).

HORS can alternatively be seen as simply-typed A-terms with

simply-typed recursion operators Y, : (0 = 0) — 0.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 12 /35

Alternating parity tree automata

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 13 /35

Alternating parity tree automata

For a MSO formula ¢,

G F o

iff an equivalent APT A, has a run over (G).

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

14 / 35

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 0(qo,1f) = (2,90) A (2,q1).

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 15 / 35

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 6(qo.if) = (2,90) A (2, q1).

if qo if qo
Nil/\if ifqo/\if ¢
Nil data : Nil data : Nil data :
Nil Nil Nil

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 15 / 35

Alternating parity tree automata

MSO discriminates inductive from coinductive behaviour.
This allows to express properties as
“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 16 / 35

Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

a
(e)

a3

C4

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 17 / 35

Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ¢:

Ay has a winning run-tree over (G) iff (G) E ¢.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 17 / 35

Intersection types and alternation

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 18 / 35

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):
6(qo,1f) = (2,90) A (2, q1)
can be seen as the intersection typing
if : 0= (90N q1) — qo
refining the simple typing

if : o—>0—0

(this talk is NOT about filter models!)

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

19 / 35

Alternating tree automata and intersection types

In a derivation typing if T; T :

)
App

(Z)I—if:(Z)—>(q0/\q1)—>qo 0

O 3if T3 : (goAq1) = Qo M1 = T2t qo o To:qr

A
PP lo1, Too Fif T1 To 1 qo

Intersection types naturally lift to higher-order — and thus to G, which
finitely represents (G).

Theorem (Kobayashi)
S:aqgFS:q iff the ATA A, has a run-tree over (G). J

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 20 / 35

A type-system for verification: without parity conditions

Axiom XI/\{i} 0k F x:0; 2k

{(i,qi) 11 <i<n1<j<k} satisfies da(q,a)

k Kn .
OFa: ALy gy = oo > A2y @nj 2> g0 —o0

AbFt: (b6 A ANO)—0 k=K ANFu:b ok
A, A, ... A B tu: 0K

App

A, x N 0
A)\X.t.(Nici 0i)) =0 k—w

Kk F ot 0K
)

NrN-R(F): 0k
F:0:rxkFF:0:k

fix

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 21 /35

A closer look at the Application rule

AbFt: (6 A ANO)—0 k=K Aibu:b:

A
PP A AL, Dp F tu:60:r/

Towards sequent calculus:

A F w0 Yie{l,...n}

A t: ") —=0 Ay, A B ou AL 0
i=1 i=1

AA,..., A, F tu: 0

Right A

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 22 /35

A closer look at the Application rule

A w0 Vie{l,...n}
AF t:(Ny0)—=0 A Bgk u: A6
AN, A, F tu: 0

Right A

Linear decomposition of the intuitionnistic arrow:

A=B = 1A—8B

Two steps: duplication / erasure, then linear use.

Right /\ corresponds to the Promotion rule of indexed linear logic.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 23 /35

Intersection types and semantics of linear logic

A=B =1A—8B

Two interpretations of the exponential modality:

Qualitative models Quantitative models

(Scott semantics) (Relational semantics)

1A = Psi(A) LA = Mjgn(A)

[o= o] = Phin(Q) x Q [o= o] = M#(Q) x Q

{90, 90, g1} = {qo, q1} [q0, o, q1] # [qo0, q1]

Order closure Unbounded multiplicities
Charles Grellois (IRIF - Bologna) (SIS S e SR AR January 20, 2016

24 / 35

Intersection types and semantics of linear logic

Bucciareli— Ehrhard
Rel,
’ de Carvalho

Non-idempotent types

Ehrhard Ehrhard, G—M
Ehrhard
Scottl, T Idempotent types
Fundamental idea:
[t] = {6|0F t:0}

and similarly for open terms.

Charles Grellois (IRIF - Bologna)

Semantics of linear logic and model-checking January 20, 2016

25 / 35

Intersection types and semantics of linear logic

Bucciareli— Ehrhard

Rel Non-idem n
el o Corvalo on-idempotent types
Ehrhard Ehrhard, G—M
Ehrhard
Scottl, T Idempotent types

Let ¢ be a term normalizing to a tree (t) and A be an alternating
automaton.

A accepts (t) fromqg < qeft] & 0 F t:q:o

Extension with recursion and parity condition?

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

25 / 35

Adding parity conditions
to the type system

Charles Grellois (IRIF - Bologna) Semantics of linear o January 20, 2016 26 / 35

Alternating parity tree automata
We add coloring annotations to intersection types:

6(qo,if) = (2,90) A (2, q1)

now corresponds to

if (b — (DQ(qO) qo A DQ(ql) ql) — qo

Idea: if is a run-tree with two holes:
if

—

[Jaoo e

A new neutral color: e for an empty term []q. Goal: subject
reduction /expansion.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

27 /35

A type-system for verification

AbFt: (00 A---ANOg 0)— 0 = k=K AjFu:6 ok
A+0O,A01+ ...+ 0,0k b tu:0:w

App

Subject reduction: the contraction of a redex

x 0601 F x:00 x:06 F x: 065

a () y :Oeoi F y:oj

o Y
Ay x:0Oq 01 A--AOg, 0 Ft 20 i

A"/\X.t:(\:‘q@l /\---ADCké)k)—w A Fouc:b;
A+ O + oo+ 0,0 (Axt) u: @

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 28 / 35

A type-system for verification

AbFt: (0O 0 A---ANOg 0) =0 = k=K AjFu:6 ok
A+0O,A01+ ...+ 0,0 B tu:0:w

App

gives a proof of the same sequent:

y:Oco1r Fy:o y :0Ocor B y: oo
Wl\sz/ ; \Sz: ; 2
L o))

A+ OgAr + oo+ O Ak txu] 2 0

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 28 / 35

A type-system for verification

Axiom x:/\{i}DEH,- Tk B ox:10 kK

{(1,gi§) |1 <i<n1<j<k} satisfies da(q,a)

k kn
OFa: AL Uag) gy — oo = N2 Uag,) G —q0—=--—0—0

Abt:(On 60 Ao Alp, 0k) >0 = k> K Ajbu:b ok
A+ 0O+ oo+ 000 B tu: 00w

App

F-R(F):0: &k
F:0.0:kFF:0:k

fix

A, x o NiggUm b ik B t00 0w

A Ax.t: (A

iel

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 29 / 35

A type-system for verification

We rephrase the parity condition to typing trees, and now capture all MSO:

Theorem (G.-Mellies 2014)

S :qo S : qo admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over (G).

We obtain decidability by collapsing to idempotent types.

Non-idempotency is very helpful for proofs, but leads to infinitary
constructions.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 30/ 35

Colored models of linear logic

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 31/35

A closer look at the Application rule

AFt:(Op 01 Ao Ay, 0k) 20 2 k=K Ajbu:b ok
A+ O+ oo+ 000 B tu: 0w

Towards sequent calculus:

ArbFu: 6 Ak u 0,)
Om 81 F 4 Om 61 Om, Ap = v Op, 01 Elg::?\
i
ARt (/\Ll Dmi 9[) i Dm1A17 R Dm,,An Fouc /\?:1 Dm; gi 8
A, OpAg, e, O Ap B otu 2 0

Right I looks like a promotion. In linear logic:

A=B = IJA—B

Our reformulation of the Kobayashi-Ong type system shows that [is a
modality which distributes with the exponential in the semantics.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 32/35

Colored semantics

We extend:

@ Rel with countable multiplicites, coloring and an
inductive-coinductive fixpoint

@ Scottl with coloring and an inductive-coinductive fixpoint.

Methodology: think in the relational semantics, and adapt to the Scott
semantics using Ehrhard’s 2012 result:

the finitary model ScottL is the extensional collapse of Rel.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 33 /35

Model-checking and finitary semantics

Let G be a HORS representing the tree (G) and A be an alternating parity
automaton.

Conjecture in infinitary Rel, but theorem in colored ScottL:

A accepts (G) from g < g € [t]

A similar theorem holds for a companion intersection type system to
colored ScottL. Since the semantics are finitary:

Corollary

The higher-order model-checking problem is decidable. J

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 34 /35

Conclusion

@ Sort of static analysis of infinitary properties.
@ We lift to higher-order the behavior of APT.

@ Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

@ In idempotent type systems / finitary semantics, we obtain
decidability of higher-order model-checking.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016

35/ 35

Conclusion

@ Sort of static analysis of infinitary properties.
@ We lift to higher-order the behavior of APT.

@ Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

@ In idempotent type systems / finitary semantics, we obtain
decidability of higher-order model-checking.

Thank you for your attention!

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 35 /35

