Linear logic, duality, and higher-order model-checking

Charles Grellois (joint work with Paul-André Mellies)

PPS & LIAFA — Université Paris 7
University of Dundee

Scottish Programming Languages Seminar
University of Edinburgh
October 21, 2015

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015

1/28

Model-checking higher-order programs
A well-known approach in verification: model-checking.

@ Construct a model M of a program
@ Specify a property ¢ in an appropriate logic

@ Make them interact: the result is whether

M E

When the model is a word, a tree. .. of actions: translate ¢ to an
equivalent automaton:

o = A,

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015

2/28

Model-checking higher-order programs
For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil
Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
/\
data if
\
Nil data
\
data
\
Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 3/28

Model-checking higher-order programs
For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil
Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
da(\if How to represent this tree finitely?
\
Nil data
\
data
\
Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 3/28

Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) A,

corresponding to a

monadic second-order logic (MSO) formula .

(safety, liveness properties, etc)

Can we decide whether a higher-order tree satisfies a MSO formula?

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 3/28

Trees vs. tree automata

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 4/28

Trees and types

Three actions here: ¥ = {if : 2, data : 1, Nil :

if
/\
Nil if
/\
data if
|
Nil data
|
data
|
Nil

Ground type: o is the type of trees

0},

(and more generally of terms over ¥ reducing to a tree).

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking

Oct 21, 2015

5/28

Trees and types

AX
if
if
data if

oO— 0
X

data

data

Applying it to Nil gives the previous tree.

o =3 £ DA
Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking

Trees and types
Church encoding of trees:

AL
|
if
/\
Nil if
/\
data if : o(X)—o
|
Nil data
|
data
|
Nil

where “\Y¥" stands for A\if. A\data. A\Nil., and

oY) o = (0o—-0—0)—(0—0)—0—0

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015

7/28

Linear decomposition of the intuitionnistic arrow
In linear logic,

A— B =

IA— B

I'A allows to duplicate or to drop A

—o uses linearly (once) each copy

= = E DA
Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking

Linear decomposition of the intuitionnistic arrow

(0—0—0)—>(0—0)—>0—0

translates as

I(lo—olo— 0)—!(lo— 0)—lo—o0

In the relational semantics of linear logic, with [o] = Q,

['Al = Min([Al) and [A—B] = [A]x[B]

For instance,

|[O — 00— O]] = Mfin(Q) X Mfin(Q) X Q

What does this mean for Church encoding of trees?

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015

8/ 28

Linear decomposition of the intuitionnistic arrow

(0—0—0)—>(0—0)—>0—0

translates as

'(lo—lo— 0) —!(lo— 0) —lo— o

Complain: where is model-checking?

We mentioned alternating parity tree automata. ..

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015

8/ 28

Alternating parity tree automata

For a MSO formula ¢,

G F o

iff an equivalent APT A, has a run over (G).

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015

9/28

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 0(qo,1f) = (2,90) A (2,q1).

= = E DA
Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 6(qo.if) = (2,90) A (2, q1).

if qo if qo
/\ /\
Nil if if qo if g1
data if data if data if
VAT VAR A
Nil data : Nil data : Nil data :
| | |
data data data
| | |
Nil Nil Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 10 / 28

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 0(qo.1f) = (2,q0) A (2. q1).
In fact, if has the linear type

if :lo—olo—o o0

so that in the relational semantics of linear logic

([, [q0; g1]; @0) € [if] € Msin(Q) X Myin(Q) x Q

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 10 / 28

Model-checking |

An alternating tree automaton over ¥, with set of states Q, of transition
function 9, provides

] = [if]¥[data] W [Nil]] € [o(¥)]

while a tree t over X gives, under Church encoding:

[< [o(¥)=ol = Min([o(®)]) xQ

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 11 /28

Model-checking |

An alternating tree automaton over ¥, with set of states Q, of transition
function 9, provides

] = [if]¥[data] W [Nil]] € [o(¥)]

while a tree t over X gives, under Church encoding:

[< [o(X)=ol = Min([o(X)]) x Q
Relational composition:
[1] o Men([]) < Q

Interactive interpretation?

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 11 /28

Model-checking |

Relational composition:

[c] o Mean([0]) < Q@

Proposition

[t] o Miin([01)

is the set of states q from which
A= (% Q,9)

accepts the tree t.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 12 /28

Model-checking |

Rel is a denotational model:

t =5 t = [t = [¥]

Corollary

For a term

the set of states q from which
A=(X, Q,0)
accepts the tree generated by the normalization of t is

[t] o Miin([6])

Static analysis, directly on the term.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 13 /28

Higher-order model-checking

We want to model-check

@ higher-order trees (“non-regular, yet of finite representation”), as

if
/\
Nil if
/\
data if
[
Nil data
[
data
Nil
@ and to account for parity conditions.
Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015

14 / 28

Higher-order recursion schemes

Some regularity for infinite trees

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 15 /28

Higher-order recursion schemes

if
/\
Nil if
/\
data if
|

Nil data
|

data
|

Nil

is represented as the higher-order recursion scheme (HORS)

G S = L Nil
L x = if x (L (data x))
Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015

16 / 28

Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

Rewriting starts from the start symbol S:

Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 17 / 28

Higher-order recursion schemes

S = L Nil
g = ,
L x = if x (L (data x))
if
L Nil L
g |
Nil data
Nil

[m] = =

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking

Higher-order recursion schemes

S = L Nil
g = .
L x = if x (L (data x))
if
Nil if

it /N
A data L

Nil L | |
| N Nil data

data |
| data

Nil |
Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 17 / 28

Higher-order recursion schemes

S = L Nil
g =]
L x = if x (L (data x))
if
Nil if
data if

(G) is an infinite

non-regular tree. ‘ /\

Nil data
It is our model M. ‘
data

Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 17 / 28

Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

“Everything” is simply-typed, and
well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol € in one step).

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 17 / 28

Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

“Everything" is simply-typed, and
well-typed programs can’t go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol € in one step).

HORS can alternatively be seen as simply-typed A-terms with

simply-typed recursion operators Y, : (0 — o) — 0.

— add fixpoints to the model.
Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 17 / 28

Model-checking Il

Finite iteration — inductive fixpoint operator on Rel.

Theorem

The infinitary normal form of a \Y -term
t : o(X)—o

is accepted by

A= <za Qa 6>
from the set of states

[t] o Miin([0])

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 18 / 28

Model-checking Il
Finite iteration — inductive fixpoint operator on Rel.

Theorem

The infinitary normal form of a \Y -term
t : o(X)—o

is accepted by
A= <z’ Q, 5>
from the set of states

[t] o Miin([6])

after a finite execution of the automaton. |

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 18 / 28

On finiteness

Infinite trees need infinite multisets: tree constructors may be used
countably.

Defining a new exponential
é DA Mcount(A)
gives a relational model of linear logic with a

coinductive fixpoint operator

(infinite fixpoint unfolding).

New interpretation of terms: [t [45.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 19 /28

Model-checking Il

Theorem
The infinitary normal form of a \Y -term
t : o(X)—o

is accepted by
A= <Z’ Q, 5>

from the set of states

|[t]]gfp o Mcount(l[é]])

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 20 / 28

Parity conditions

o =3 = £ DA
Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking

Alternating parity tree automata

MSO discriminates inductive from coinductive behaviour.
Typical properties:
“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 22 /28

Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

a
()
C3
C4

Cs

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 23 /28

Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ¢:

Ay has a winning run-tree over (G) iff (G) F ¢

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 23 /28

The coloring comonad

We disclose that coloring is a modality — or a coeffect.
It defines a comonad in the semantics:

OA = ColxA

which can be composed with 4, giving an infinitary, colored model of linear
logic in which

5(qO7 if) = (27 qO) N (27 ql)

corresponds to

([]’ [(Q(qO)a qO)»(Q(ql)v ql)]> qO) € [[if]]

in the semantics.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 24 /28

Coloring and rewriting

The semantics of a finite term of type o characterizes the colors of its
finite branches.

This extends to higher-order.

Colored fixpoint operator: compose denotations in a winning way —
inductively or coinductively, according to the coloring coeffect.

This operator has good properties (Conway operator).

New interpretation [¢]cor-

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 25 /28

Model-checking IV

Theorem

The infinitary normal form of a \Y -term
t:oX)—o
is accepted by the parity automaton
A=(X, Q,6 Q)

from the set of states

[tlecor © Mea([0])

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 26 / 28

Model-checking V

Ehrhard 2012: the finitary modal ScottL is the extensional collapse of Rel.

Two essential differences:
o [lA] = Pin(A)

@ necessity of “subtyping”
We adapted to ScottL the theoretical approach of this work.

Corollary
The higher-order model-checking problem is decidable. J

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 27 / 28

Conclusion

@ Linear logic reveals a very natural duality between terms and
(alternating) automata.

@ Models can be extended to handle additional conditions on automata
(parity. ..)

@ Relational semantics are infinitary, but their simplicity eases
theoretical reasoning on problems.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 28 /28

Conclusion

@ Linear logic reveals a very natural duality between terms and
(alternating) automata.

@ Models can be extended to handle additional conditions on automata
(parity. ..)

@ Relational semantics are infinitary, but their simplicity eases
theoretical reasoning on problems.

Thank you for your attention!

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 28 /28

