
Linear logic, duality, and higher-order model-checking

Charles Grellois (joint work with Paul-André Melliès)

PPS & LIAFA — Université Paris 7
University of Dundee

Scottish Programming Languages Seminar
University of Edinburgh

October 21, 2015

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 1 / 28

Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model M of a program

Specify a property ϕ in an appropriate logic

Make them interact: the result is whether

M � ϕ

When the model is a word, a tree. . . of actions: translate ϕ to an
equivalent automaton:

ϕ 7→ Aϕ

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 2 / 28

Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 3 / 28

Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

...data

data

Nil

data

Nil

Nil

How to represent this tree finitely?

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 3 / 28

Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) Aϕ

corresponding to a

monadic second-order logic (MSO) formula ϕ.

(safety, liveness properties, etc)

Can we decide whether a higher-order tree satisfies a MSO formula?

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 3 / 28

Trees vs. tree automata

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 4 / 28

Trees and types

Three actions here: Σ = { if : 2, data : 1, Nil : 0 }.

if

if

if
...data

data

Nil

data

Nil

Nil

: o

Ground type: o is the type of trees
(and more generally of terms over Σ reducing to a tree).

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 5 / 28

Trees and types

λx

if

if

if

...data

data

x

data

x

x

: o → o

Applying it to Nil gives the previous tree.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 6 / 28

Trees and types
Church encoding of trees:

λΣ

if

if

if
...data

data

Nil

data

Nil

Nil

: o(Σ)→ o

where “λΣ” stands for λif. λdata. λNil. , and

o(Σ)→ o = (o → o → o)→ (o → o)→ o → o

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 7 / 28

Linear decomposition of the intuitionnistic arrow

In linear logic,

A→ B = !A(B

!A allows to duplicate or to drop A

(uses linearly (once) each copy

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 8 / 28

Linear decomposition of the intuitionnistic arrow

(o → o → o)→ (o → o)→ o → o

translates as

! (! o (! o (o)(! (! o (o)(! o (o

In the relational semantics of linear logic, with [[o]] = Q,

[[!A]] = Mfin([[A]]) and [[A(B]] = [[A]]× [[B]]

For instance,

[[o → o → o]] = Mfin(Q)×Mfin(Q)× Q

What does this mean for Church encoding of trees?
Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 8 / 28

Linear decomposition of the intuitionnistic arrow

(o → o → o)→ (o → o)→ o → o

translates as

! (! o (! o (o)(! (! o (o)(! o (o

Complain: where is model-checking?

We mentioned alternating parity tree automata. . .

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 8 / 28

Alternating parity tree automata

For a MSO formula ϕ,

〈G〉 � ϕ

iff an equivalent APT Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 9 / 28

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 10 / 28

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 10 / 28

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

In fact, if has the linear type

if : ! o (! o (o

so that in the relational semantics of linear logic

([], [q0, q1], q0) ∈ [[if]] ⊆ Mfin(Q)×Mfin(Q)× Q

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 10 / 28

Model-checking I

An alternating tree automaton over Σ, with set of states Q, of transition
function δ, provides

[[δ]] = [[if]]] [[data]]] [[Nil]] ⊆ [[o(Σ)]]

while a tree t over Σ gives, under Church encoding:

[[t]] ⊆ [[o(Σ)→ o]] = Mfin ([[o(Σ)]])× Q

Relational composition:

[[t]] ◦ Mfin([[δ]]) ⊆ Q

Interactive interpretation?

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 11 / 28

Model-checking I

An alternating tree automaton over Σ, with set of states Q, of transition
function δ, provides

[[δ]] = [[if]]] [[data]]] [[Nil]] ⊆ [[o(Σ)]]

while a tree t over Σ gives, under Church encoding:

[[t]] ⊆ [[o(Σ)→ o]] = Mfin ([[o(Σ)]])× Q

Relational composition:

[[t]] ◦ Mfin([[δ]]) ⊆ Q

Interactive interpretation?

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 11 / 28

Model-checking I

Relational composition:

[[t]] ◦ Mfin([[δ]]) ⊆ Q

Proposition

[[t]] ◦ Mfin([[δ]])

is the set of states q from which

A = 〈Σ, Q, δ 〉

accepts the tree t.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 12 / 28

Model-checking I
Rel is a denotational model:

t →β t ′ =⇒ [[t]] = [[t ′]]

Corollary

For a term
t : o(Σ)→ o

the set of states q from which

A = 〈Σ, Q, δ 〉

accepts the tree generated by the normalization of t is

[[t]] ◦ Mfin([[δ]])

Static analysis, directly on the term.
Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 13 / 28

Higher-order model-checking

We want to model-check

higher-order trees (“non-regular, yet of finite representation”), as

if

if

if
...data

data

Nil

data

Nil

Nil

and to account for parity conditions.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 14 / 28

Higher-order recursion schemes

Some regularity for infinite trees

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 15 / 28

Higher-order recursion schemes

if

if

if
...data

data

Nil

data

Nil

Nil

is represented as the higher-order recursion scheme (HORS)

G =

{
S = L Nil

L x = if x (L (data x))

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 16 / 28

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

Rewriting starts from the start symbol S:

S →G

L

Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 17 / 28

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

L

Nil

→G

if

L

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 17 / 28

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 17 / 28

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

〈G〉 is an infinite
non-regular tree.

It is our model M.

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 17 / 28

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

“Everything” is simply-typed, and

well-typed programs can’t go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol Ω in one step).

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 17 / 28

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

“Everything” is simply-typed, and

well-typed programs can’t go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol Ω in one step).

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

→ add fixpoints to the model.
Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 17 / 28

Model-checking II

Finite iteration → inductive fixpoint operator on Rel .

Theorem

The infinitary normal form of a λY -term

t : o(Σ)→ o

is accepted by
A = 〈Σ, Q, δ 〉

from the set of states
[[t]] ◦ Mfin([[δ]])

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 18 / 28

Model-checking II

Finite iteration → inductive fixpoint operator on Rel .

Theorem

The infinitary normal form of a λY -term

t : o(Σ)→ o

is accepted by
A = 〈Σ, Q, δ 〉

from the set of states
[[t]] ◦ Mfin([[δ]])

after a finite execution of the automaton.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 18 / 28

On finiteness

Infinite trees need infinite multisets: tree constructors may be used
countably.

Defining a new exponential

 : A 7→ Mcount(A)

gives a relational model of linear logic with a

coinductive fixpoint operator

(infinite fixpoint unfolding).

New interpretation of terms: [[t]]gfp.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 19 / 28

Model-checking III

Theorem

The infinitary normal form of a λY -term

t : o(Σ)→ o

is accepted by
A = 〈Σ, Q, δ 〉

from the set of states

[[t]]gfp ◦ Mcount([[δ]])

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 20 / 28

Parity conditions

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 21 / 28

Alternating parity tree automata

MSO discriminates inductive from coinductive behaviour.

Typical properties:

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 22 / 28

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 23 / 28

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � φ

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 23 / 28

The coloring comonad

We disclose that coloring is a modality – or a coeffect.
It defines a comonad in the semantics:

� A = Col × A

which can be composed with , giving an infinitary, colored model of linear
logic in which

δ(q0, if) = (2, q0) ∧ (2, q1)

corresponds to

([], [(Ω(q0), q0), (Ω(q1), q1)], q0) ∈ [[if]]

in the semantics.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 24 / 28

Coloring and rewriting

The semantics of a finite term of type o characterizes the colors of its
finite branches.

This extends to higher-order.

Colored fixpoint operator: compose denotations in a winning way –
inductively or coinductively, according to the coloring coeffect.

This operator has good properties (Conway operator).

New interpretation [[t]]col .

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 25 / 28

Model-checking IV

Theorem

The infinitary normal form of a λY -term

t : o(Σ)→ o

is accepted by the parity automaton

A = 〈Σ, Q, δ, Ω 〉

from the set of states
[[t]]col ◦ Mcol ([[δ]])

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 26 / 28

Model-checking V

Ehrhard 2012: the finitary modal ScottL is the extensional collapse of Rel .

Two essential differences:

[[!A]] = Pfin(A)

necessity of “subtyping”

We adapted to ScottL the theoretical approach of this work.

Corollary

The higher-order model-checking problem is decidable.

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 27 / 28

Conclusion

Linear logic reveals a very natural duality between terms and
(alternating) automata.

Models can be extended to handle additional conditions on automata
(parity. . .)

Relational semantics are infinitary, but their simplicity eases
theoretical reasoning on problems.

Thank you for your attention!

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 28 / 28

Conclusion

Linear logic reveals a very natural duality between terms and
(alternating) automata.

Models can be extended to handle additional conditions on automata
(parity. . .)

Relational semantics are infinitary, but their simplicity eases
theoretical reasoning on problems.

Thank you for your attention!

Charles Grellois (PPS - LIAFA - Dundee) Linear logic and model-checking Oct 21, 2015 28 / 28

