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Model-checking higher-order programs
A well-known approach in verification: model-checking.

@ Construct a model M of a program
@ Specify a property ¢ in an appropriate logic

@ Make them interact: the result is whether

M E

When the model is a word, a tree. .. of actions: translate ¢ to an
equivalent automaton:

o = A,
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Model-checking higher-order programs
For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil
Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
/\
data if
\
Nil data
\
data
\
Nil
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Model-checking higher-order programs
For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil
Listen x = if end then x else Listen (data x)

modelled as

if
/\
Nil if
da(\if How to represent this tree finitely?
\
Nil data
\
data
\
Nil
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Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) A,

corresponding to a

monadic second-order logic (MSO) formula .

(safety, liveness properties, etc)

Can we decide whether a higher-order tree satisfies a MSO formula?
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Higher-order recursion schemes

Some regularity for infinite trees
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Higher-order recursion schemes

Main = Listen Nil
if end then x else Listen (data x)

Listen x

is abstracted as

g:

S = L Nil
L x = if x (L (data x))

which produces (how ?) the higher-order tree of actions

if
/\
Nl if
data :
\
Nil
A semantic study of model-checking Nov 2, 2015
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Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

Rewriting starts from the start symbol S:

Nil
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Higher-order recursion schemes

S = L Nil
g = ,
L x = if x (L (data x))
if
L Nil L
g |
Nil data
Nil

[m] = =
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Higher-order recursion schemes

S = L Nil
g = .
L x = if x (L (data x))
if
Nil if

it /N
A data L

Nil L | |
| N Nil data

data |
| data

Nil |
Nil
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Higher-order recursion schemes

g _ S = LNl
B L x = if x (L (data x))
if
TN
Nil if
/\
data if
G = A
Nil data :
|
data
|
Nil
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Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

“Everything” is simply-typed, and
well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol € in one step).
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Higher-order recursion schemes

G - s = LNl
B L x = if x (L (data x))

“Everything” is simply-typed, and
well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol € in one step).

HORS can alternatively be seen as simply-typed A-terms with

simply-typed recursion operators Y, : (0 = 0) — 0.
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Higher-order recursion schemes

We can adapt to HORS the fact that coinductive parallel head reduction
computes the normal form of infinite A-terms:

/

S —gw S
()\X.S) t —>gW S[X < t] st _>gw S, t
F —gw R(F)

t =G, At ty ti —g t (Vi)

1

t =g at -t

n

This reduction computes (G) whenever it exists (a decidable question).

This presentation allows coinductive reasoning on rewriting.
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Modal p-calculus and
alternating parity tree automata
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Modal p-calculus

Over trees we may use several logics: CTL, MSO,. ..
In this work we use modal p-calculus. It is equivalent to MSO over trees.

Grammar: ¢, ¢ == X |a|oVy | oAy |O¢| 0| pX.¢o|vX. .9

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Nov 2, 2015 9 / 66



Modal p-calculus

Grammar: ¢, ¢ == X |a|oV | oAy |O¢| 0| uX.o|vX. .o
X is a variable

a is a predicate corresponding to a symbol of &

0 ¢ means that ¢ should hold on every successor of the current node

©j ¢ means that ¢ should hold on one successor of the current node (in
direction 1)

We can also define (variant) o = \/; <;.
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Modal p-calculus

Grammar: ¢, ¢ == X |a|oVy | oAy |O¢| ciop| pX.¢o|vX. .9

uX. ¢ is the least fixpoint of ¢(X). It is computed by expanding finitely
the formula:

pX.9(X)  — ¢(uX. (X)) —  B(d(uX. (X))
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Modal p-calculus

Grammar: ¢, ¢ == X |a|oVy | oAy |O¢| ciop| pX.¢o|vX. .9

vX. ¢ is the greatest fixpoint of ¢(X). It is computed by expanding
infinitely the formula:

vX.p(X) — (X 9(X)) —  o(o(vX. ¢(X)))
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Modal p-calculus

Grammar:

o, n= XlaloVy|ony |[Od| 0id | pX.¢|vX. ¢
What does:

¢ = vX. (if Aoy (pY. (NilVOY ))A02 X))
mean ?

o =3 £ DA
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Modal p-calculus

Grammar: ¢, ¢ == X |a|oVy | oAy |O¢| cip| pX.¢o|vX. .9

What does:

¢ = vX. (ifAop (pY. (NLLVOY ) )N X))

mean ?
And how does it interact with a tree?

— tree automata
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if ¢
/\
Nil if

N

data if

A

Nil data

data

Nil

where ¢ = vX. (if Aop (pY. (Ni1VOY ) ) A0 X))
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if if Aop (pY.(NL1VOY ) )Ao2 ¢

N

Nil if
/\
data if
o
Nil data :
|
data
|
Nil

where ¢ = vX. (if Aop (pY. (Ni1VOY ) ) A0 X))
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if ¢©1 (MY.(NilVDY))A02¢

N

Nil if
/\
data if
o
Nil data :
|
data
|
Nil

where ¢ = vX. (if Aop (pY. (Ni1VOY ) ) A0 X))

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Nov 2, 2015 16 / 66



Alternating parity tree automata
Idea: the formula "starts’ on the root

if <>2¢)
/\
Nil uY. (Nil\/DY) if
/\
data if
o
Nil data :
|
data
|
Nil

where ¢ = vX. (if Aop (pY. (Ni1VOY ) ) A0 X))
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if
/\

Nil pY.(NilvOY) if ¢
/\
data if

Nil data :

data

Nil

where ¢ = vX. (if Aop (pY. (Ni1VOY ) ) A0 X))
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if
Nil NilvOpY.(NilvOY) if ¢
/\
data if
Nil data :
data
Nil

where ¢ = vX. (if Aop (pY. (Ni1VOY ) ) A0 X))
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if

T

Nil Nil if ¢

PN

data if

e

Nil data

data

Nil

where ¢ = vX. (if Aop (pY. (Ni1VOY ) ) A0 X))
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if
Nil Nil if

/\

data pY.(NilVOY ) if ¢

| -

Nil data

data

Nil

where ¢ = vX. (if Aop (pY. (Ni1VOY ) ) A0 X))
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if
Nil Nil if

/\

data NilvO(pY.(NilvOY)) if ¢

| -

Nil data

data

Nil

where ¢ = vX. (if Aop (pY. (Ni1VOY ) ) A0 X))
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if
Nil Nil if

/\

data O(pY.(NilvOY )) if ¢

| -

Nil data

data

Nil

where ¢ = vX. (if Aop (pY. (Ni1VOY ) ) A0 X))
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if
Nil Nil if
data if ¢

| <

Nil uY.(NilvOY ) data

data

Nil

where ¢ = vX. (if Aop (pY. (Ni2VOY ) ) A0 X))
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if
Nil Nil if
data if ¢

| -

Nil NilVO(pY.(NilvOY)) data

data

Nil

where ¢ = vX. (if Aop (pY. (Ni2VOY ) ) A0 X))
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Alternating parity tree automata
Idea: the formula "starts’ on the root

if
Nil Nil if
data if ¢

e

Nil Nil data

data

Nil

where ¢ = vX. (if Aop (pY. (Ni1VOY ) ) A0 X))
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Alternating parity tree automata

Conversion to an automaton ?
@ Unfold the formula over the tree, but always by reading a letter:
synchronization with the tree.
@ States < subformulas
@ Needs non-determinism for V and alternation for A

@ Needs a parity condition for distinguishing p and v
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Alternating parity tree automata

For a MSO formula ¢,
G) F o

iff an equivalent APT A, has a run over (G).

APT = alternating tree automata (ATA) + parity condition.

weak MSO

2

MSO
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 0(qo,1f) = (2,90) A (2,q1).

= = E DA
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 6(qo.if) = (2,90) A (2, q1).

if qo if qo
Nil/\if ifqo/\if ¢
Nil data : Nil data : Nil data :
Nil Nil Nil
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: 6(qo, if) = (2,q0) A (2, q1)-
This infinite process produces a run-tree of A, over (G).

It is an infinite, unranked tree.
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Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.
This allows to express properties as
“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.
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Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

a
()
C3
C4

Cs
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Alternating parity tree automata

Each state of an APT is attributed a color

Q(q) € Col CN

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ¢:

Ay has a winning run-tree over (G) iff (G) F ¢
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Intersection types and alternation

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Nov 2, 2015 32 /66



ATA vs. HORS

/

S —gw S
(MAx.s)t —gw s[x <« t] st —gw St
F —gw R(F)
t =G, aticta gy —F4 gy

where the duplication “conforms to §” (there is non-determinism).

Starting from S : qo, this computes run-trees of an ATA A over (G).

We get closer to type theory. ..
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Alternating tree automata and intersection types

A key remark (Kobayashi 2009):
6(qo,1f) = (2,90) A (2, q1)
can be seen as the intersection typing
if : 0= (90N q1) — qo
refining the simple typing

if : o—>0—0

(this talk is NOT about filter models!)
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Alternating tree automata and intersection types

In a derivation typing if T; T :

)
App

Q)I—if:(?)—>(q0/\q1)—>qo 0

O 3if T3 : (goAq1) = Qo M1 = T2t qo o To:qr

A
PP lo1, Too Fif T1 To 1 qo

Intersection types naturally lift to higher-order — and thus to G, which
finitely represents (G).

Theorem (Kobayashi)
S:aqgFS:q iff the ATA A, has a run-tree over (G). J
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A type-system for verification: without parity conditions

App

Axiom XI/\{i} 0k F x:0; 2k

{(i,qi) 11 <i<n1<j<k} satisfies da(q,a)

k Kn .
OFa: ALy gy = oo > A2y @nj 2> g0 —o0

AbFt: (b6 A ANO)—0 k=K ANFu:b ok
A+ A+ ... +A F tu:0: K

A, x o N 0
A )\X.t.( Nici 0i)) =0 k—w

Kk F ot 0K
)

NrN-R(F): 0k
F:0:rxkFF:0:k

fix
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An alternate proof

Theorem

S:qo F S : qoiffthe ATA Ay has a run-tree over (G).

Proof: coinductive subject reduction/expansion along the head reduction
of derivations with non-idempotent intersection types.

T i (G) is
: — : <= accepted
S:q F S:q 0 F (G): q by A.
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Adding parity conditions
to the type system
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One more word on proof rewriting

Y Y ¥ Y

0 CO

S:qgF S:q 0= (G): qo

where the C; are the tree contexts obtained by normalizing each ;.

Go[Gi], Go]] is a prefix of a run-tree of A over (G).
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One more word on proof rewriting

¢y
A~

Go
SZqu—SZqO @"<g

hid

C
) qo
Theorem

In this quantitative setting, there is a correspondence between infinite

branches of the typing of G and of the run-tree over (G) obtained by
normalization.
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One more word on proof rewriting

NS

52q0|—52q0 @l—

kvd

—° =
Go

(G) : qo

The goal now: add information in 7r; about the maximal color seen in C;.

One extra color: ¢ for the case G; = [].
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Alternating parity tree automata

We add coloring informations to intersection types:

5(q0,1f) = (2,90) A (2, q1)

now corresponds to

if 1 0= (To(g) 90 A oggy) 91) — 90

Application computes the “local” maximum of colors, and the fixpoint
deals with the acceptance condition.
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A type-system for verification (Grellois-Mellies 2014)

AbFt: (00 A---ANOg 0)— 0 = k=K AjFu:6 ok
A+0O,A01+ ...+ 0,0k b tu:0:w

App

Subject reduction: the contraction of a redex

x 0601 F x:00 x:06 F x: 065

a () y :Oeoi F y:oj

o Y
Ay x:0Oq 01 A--AOg, 0 Ft 20 i

A"/\X.t:(\:‘q@l /\---ADCké)k)—w A Fouc:b;
A+ O + oo+ 0,0 (Axt) u: @

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Nov 2, 2015 42 / 66



A type-system for verification (Grellois-Mellies 2014)

AbFt: (0O 0 A---ANOg 0) =0 = k=K AjFu:6 ok
A+0O,A01+ ...+ 0,0 B tu:0:w

App

gives a proof of the same sequent:

y:Oco1r Fy:o y :0Ocor B y: oo
Wl\sz/ ; \Sz: ; 2
L o))

A+ OgAr + oo+ O Ak txu] 2 0
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A type-system for verification (Grellois-Mellies 2014)

Axiom x:/\{i}DEH,- Tk B ox:10 kK

{(1,gi§) |1 <i<n1<j<k} satisfies da(q,a)

k kn
OFa: AL Uag) gy — oo = N2 Uag,) G —q0—=--—0—0

Abt:(On 60 Ao Alp, 0k) >0 = k> K Ajbu:b ok
A+ 0O+ oo+ 000 B tu: 00w

App

F-R(F):0: &k
F:0.0:kFF:0:k

fix

A, x o NiggUm b ik B t00 0w

A Ax.t: (Nig Om 0i) =0 k=

iel
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A type-system for verification (Grellois-Mellies 2014)

We rephrase the parity condition to typing trees, and now capture all MSO:

Theorem (G.-Mellies 2014)

S :qo S : qo admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over (G).

We obtain decidability by collapsing to idempotent types.

Non-idempotency is very helpful for proofs, but leads to infinitary
constructions.
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Models of linear logic
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It was linear logic all the way!

Linear logic very naturally handles alternation via

A=B = !A—oB

In the relational semantics of linear logic, with o] = Q,

I'Al = Mig([A]) and [A— B] = [A] x[BI]
so that

[o—0—=0] = Mg(Q)x Mgn(Q) x Q

and

([]7 [qu ‘-71]7 qO) € |[if]] C Mﬁn(Q) X Mf/n(Q) X Q
models §(qo,if) = (2,90) A (2, q1).
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Duality between trees and automata

Church encoding of trees:

X
|
if
/\
Nil if
/\
data if : o(X)—o
|
Nil data
|
data
|
Nil

where “\Y¥" stands for A\if. A\data. A\Nil., and

oY)y o = (0o—20—0)—=(0—0)—0—o0
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Duality between trees and automata

Church encoding of trees:

AL
|
if
/\
Nil if
/\
data if : o(X)—o
|
Nil data
|
data
|
Nil

Now, a term of type o(X) — o normalizes to a X-labelled tree.
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Model-checking |

An alternating tree automaton over ¥, with set of states Q, of transition
function 9, provides

] = [if]¥[data] W [Nil]] € [o(¥)]

while a tree t over X gives, under Church encoding:

[ < [o(¥)=ol = Min([o(®)]) xQ
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Model-checking |

An alternating tree automaton over ¥, with set of states Q, of transition
function 9, provides

] = [if]¥[data] W [Nil]] € [o(¥)]

while a tree t over X gives, under Church encoding:

[ < [o(X)=ol = Min([o(X)]) x Q
Relational composition:
[1] o Men([]) < Q

Interactive interpretation?
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Model-checking |

Relational composition:

[c] o Mean([0]) < Q@

Proposition

[t] o Miin([01)

is the set of states q from which
A= (% Q,9)

accepts the tree t.
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Model-checking |

Rel is a denotational model:

t =5 t = [t = [¥]

Corollary

For a term

the set of states q from which
A=(X, Q,0)
accepts the tree generated by the normalization of t is

[t] o Miin([6])

Static analysis, directly on the term.
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Model-checking Il
Generalizing to trees generated by HORS? — add a fixpoint.

Finite iteration — inductive fixpoint operator on Rel.

Theorem

The infinitary normal form of a \Y -term
t :oX)—o

is accepted by
A= <Z, Q, 5>
from the set of states

[t] o Miin([01)
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Model-checking Il

Generalizing to trees generated by HORS? — add a fixpoint.

Finite iteration — inductive fixpoint operator on Rel.

Theorem

The infinitary normal form of a \Y -term
t :oX)—o

is accepted by
A=(%, Q,9)
from the set of states

[t] o Miin([01)

after a finite execution of the automaton. |
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On finiteness

Infinite trees need infinite multisets: tree constructors may be used
countably.

Defining a new exponential
é DA Mcount(A)
gives a relational model of linear logic with a

coinductive fixpoint operator

(infinite fixpoint unfolding).

New interpretation of terms: [t [45.
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Model-checking Il

Theorem
The infinitary normal form of a \Y -term
t : o(X)—o

is accepted by
A= <Z’ Q, 5>

from the set of states

|[t]]gfp o Mcount(l[é]])

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Nov 2, 2015 53 / 66



The coloring comonad

The coloring modality of the type system corresponds to a comonad in the
semantics:

OA = ColxA
Structural morphisms:

(max(mq, mp), a) — (my, (mp, a)) : OA—OOA
(,a) — a . OA—-A
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Parity conditions

The modality [J distributes over the exponential 4: there is a natural
transformation

50 —0O4

satisfying some coherence diagram.

It follows that the composite
§ =140

is an exponential, so that we automatically obtain a model of the
A-calculus associated to the coloured typings.

Colored interpretation: [t ]cos-
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Linear decomposition of the intuitionnistic arrow

Kleisli composition: consider

f:40A>B

and
g 4B —=C

Their composite is defined as

sO0BS C

where \ is the distributivity law between ! and [J.
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Linear decomposition of the intuitionnistic arrow

Kleisli composition: consider

f:40A>B

and
g 4B —=C
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Linear decomposition of the intuitionnistic arrow

Kleisli composition: consider

f:40A>B

and
g 4B —=C

Their composite is defined as

JO0A = s00A = 4400A DS 50504 125 yoBE ¢

where \ is the distributivity law between ! and [J.
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Parity conditions

We obtain a very natural colored interpretation of types:

[A= B] = Meoune(Col x [A]) x [B]

and we can relate the typing derivations in the colored intersection type
system with the construction of denotations in the resulting model.
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An example of coloured interpretation
Suppose 2(qo) = 0and Q(q1) = 1.

AX
u
a qo

VN

X qo Yy g1 X q1 X q1

This rule will be interpreted in the model as

([(Oa qO)? (17 q1)> (17 ql)]v [(17 ql)]’ qO)
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Connection with the coloured relational model

To obtain the acceptance theorem for alternating parity automata, we
need a fixpoint which reflects the parity condition.

This operator composes denotations infinitely, and only keeps the result if
it comes from a winning composition tree.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Nov 2, 2015 63 / 66



Model-checking IV

Theorem

The infinitary normal form of a \Y -term
t:oX)—o
is accepted by the parity automaton
A=(X, Q,6 Q)

from the set of states

[tlecor © Mea([0])
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Model-checking V

Ehrhard 2012: the finitary modal ScottL is the extensional collapse of Rel.

Two essential differences:
o [lA] = Pin(A)

@ necessity of “subtyping”
We adapted to ScottL the theoretical approach of this work.

Corollary
The higher-order model-checking problem is decidable. J
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Conclusion

@ Sort of static analysis of infinitary properties.
@ We lift to higher-order the behavior of APT.

@ Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

@ In idempotent type systems / finitary semantics, we obtain
decidability of higher-order model-checking.
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Conclusion

@ Sort of static analysis of infinitary properties.
@ We lift to higher-order the behavior of APT.

@ Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

@ In idempotent type systems / finitary semantics, we obtain
decidability of higher-order model-checking.

Thank you for your attention!
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