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1. BIAT logics in a nutshell
2. Semantics
3. Proof systems
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Logics of bringing-it-about

Two main routes in agency logics (cf. Herzig, Lorini & Troquard 2018)

1. Actions as results

» Analysis of actions only in terms of their result.
> e.g. logics of Bringing-It-About-That, logics of Seeing-To-It-That.

2. Actions as means+results

» Focus on the result and the means by which it is obtained.
» e.g. variants of Propositional Dynamic Logic.
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Logics of bringing-it-about

Two main routes in agency logics (cf. Herzig, Lorini & Troquard 2018)

1. Actions as results

» Analysis of actions only in terms of their result.
> e.g. logics of Bringing-It-About-That, logics of Seeing-To-It-That.

2. Actions as means+results

» Focus on the result and the means by which it is obtained.
» e.g. variants of Propositional Dynamic Logic.

Logic of bringing-it-about

[ action = the result it brings about ]

No matter the means by which the result is obtained.
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BIAT vs. STIT: focus on responsibility

An agent b.i.a.t. something only if she is responsible of its realization

» Cannot b.i.a.t. something which is the case independently from her action.
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Elgesem logic: BIAT + capability (Elgesem 1997)

Two modalities: Does & Can, indexed by agents
> E;A “Agentib..at. A"
> C;A "Agent i is capable of b.i.a.t. A”.

E.g.

Csara—ELucy Bank Transfer

“Sara can prevent Lucy from making a bank transfer”.

Elgesem logic

» Classical propositional logic +
» Principles for E and C.
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Elgesem logic: BIAT + capability (Elgesem 1997)

» Principle of success:

(T]E) EA— A

v

Principle of aggregation:

(C]E) E,A AN ]E,B — E,(A A B)

v

Do implies Can:

(|nt]E((;) E,A— CA

v

Principle of possibility:
(Pc) -C;L

v

Principle of avoidability:
(Qc) -GT

» Actions are not sensitive to their syntactic formulation:

A+ B A+ B

(REz) A BB (REc) TaCB

Remark: P, Q for both C and E. T, C only for E.
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RIL BIAT

ERY NORMAL 'EOPLE ERY NON-NORMAL [0GIC

Non-normal modalities

» No monotonicity:
FA—-B % EEA—EB
(otherwise E;A — E;T)

» No necessitation:
FEA % FEA
(otherwise E; T)

Incompatible with normal modalities
» Contains the negation of necessitation:
E-ET

» No normal extension is possible
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Extensions of Elgesem logic

A basic framework that can be extended in many ways

Some examples:

> Attempted actions (Jones & Parent 2007):

H;A “Agent i attempts to b.i.a.t. A"

» Time, confirmation and disconfirmation (Troquard 2019):

(C/A)S(E;B) *“Agent i could do A since agent j did B".

» Coalitions (Troquard 2014):
E;A “Group g b.i.a.t. A
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Extensions of Elgesem logic

A basic framework that can be extended in many ways

Some examples:
> Attempted actions (Jones & Parent 2007):

H;A “Agent i attempts to b.i.a.t. A"

» Time, confirmation and disconfirmation (Troquard 2019):

(C/A)S(E;B) *“Agent i could do A since agent j did B".

» Coalitions (Troquard 2014):
E;A “Group g b.i.a.t. A"

t We look at this one
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Group responsibility

No coalition monotonicity

A group b.i.a.t. something only if every member contributes to its realization

1 think we are
working too hard

We are digging
a hole
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Troquard's coalition logic (Troquard 2014)

» Elgesem axioms with single agents replaced by groups:

EgA— A EBeAANEB 5 E(AAB)  —Cgl  —CgT

A< B A< B
EeA = CA E,A ¢ E,B C,A <> C,B
» Principle of non-emptiness:
(Fc) —CpA

» Principle of coalition:

(Intﬁc) Eg1A A Eng - (Cglng(A A B)
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1. BIAT logics in a nutshell
2. Semantics
3. Proof systems
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Semantics of Elgesem logic

> Selection function models (Elgesem 1997)

» Neighbourhood models (Governatori & Rotolo 2005)

» Bi-neighbourhood models

t We look at these two
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Neighbourhood semantics (Governatori & Rotolo 2005)

Neighbourhood models
M= W,NE NE, V), where
» WV non-empty set of worlds.
» V valuation function Atm — P(W).
> NE, NF neighbourhood functions W —s PP(W) for every agent .

Intuition: NF, NT assign to every world the actions that i does/can do in it

[ wlFEA iff [A] € NE(w) wi-CiA iff [A] € N (w) ]

°op w - E;ip

L] & w I Eiq
w [¢]

N
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Neighbourhood semantics (Governatori & Rotolo 2005)

Neighbourhood models
M= W,NE NE, V), where
» WV non-empty set of worlds.
» V valuation function Atm — P(W).

> NE, NF neighbourhood functions W —s PP(W) for every agent .

[ wlFEA iff [A] € NE(w) wl-CiA iff [A] € N (w) ]

Model conditions

If a, 8 € NF(w), then a N B € NE(w).

If o € NF(w), then w € a.
0 ¢ Ni°(w).

W ¢ N (w).

NE(w) C N (w).

(Ce)
(Te)
(Pc)
(Qc)
(Int]E(C)

13/30



Bi-neighbourhood semantics: Reasoning with partial information

e p o —p
L] o L] L] e] o [e] [e]
L] o L] L e] (e} [e] [e]
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Bi-neighbourhood semantics: Reasoning with partial information

e} [e] [e] [¢]
(e} [¢] [e] [e]
(e} o [e] [e]

€ N (w)
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Bi-neighbourhood semantics: Reasoning with partial information

p is true p? p is false
—_— — —_—
[ ] ] ] [ ] [ ] o o o
[ ] [ ] [ ] [ ] [ ] o o o
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Bi-neighbourhood semantics: Reasoning with partial information

14/30



Bi-neighbourhood semantics: Reasoning with partial information

e p o p
«

L] e]

L e]

L] [e]

[ wlFEip iff thereis (a,3) € Nf(w) s.t. a C [p] and 3 C [-p]. ]
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Bi-neighbourhood semantics: Reasoning with partial information

Bi-neighbourhood semantics
M= (W,N,V), where W # 0; V : Atm — P(W); and
> N, NF bi-neighbourhood functions W —s P(P(W) x P(W)).

wlFE;A iff  thereis (o, 3) € NE(w) s.t. a C [A] and 3 C [-A].
wlFCA iff thereis (o, B) € NF(w) s.t. a C [A] and 3 C [-A].
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Bi-neighbourhood semantics
M= (W,N,V), where W # 0; V : Atm — P(W); and
> N, NF bi-neighbourhood functions W —s P(P(W) x P(W)).

wlFE;A iff  thereis (o, 3) € NE(w) s.t. a C [A] and 3 C [-A].
wlFCA iff thereis (o, B) € NF(w) s.t. a C [A] and 3 C [-A].

Model conditions

I (0, ), (7,6) € NE(w), then (a7, 6U3) € NE(w).  (Cz)
If (a, B) € NF(w), then w € a. (Tr)
If (a, B) € NF(w), then 8 # 0. (Qc)
If (a, B) € NF(w), then a # 0. (Pc)
N (w) € N (w). (Intac)
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Bi-neighbourhood semantics: Reasoning with partial information

Bi-neighbourhood semantics
M= (W,N,V), where W # 0; V : Atm — P(W); and
> N, NF bi-neighbourhood functions W —s P(P(W) x P(W)).

wlFE;A iff  thereis (o, 3) € NE(w) s.t. a C [A] and 3 C [-A].
wlFCA iff thereis (o, B) € NF(w) s.t. a C [A] and 3 C [-A].

Relation with the neighbourhood semantics
» (a, ) can be seen as lower and upper bounds of standard neighbourhoods:
Equivalent standard models definable with:
o NT(w) = {7 | there is (o, B) € N (W) s.t. a« Ty C W)\ B}

» Neighbourhood semantics as the particular case where o and 3 are
complementary for every (a, ().
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Semantics for coalition logic

» Neighbourhood semantics (Troquard 2014)

Bi-neighbourhood semantics NEW!
> N7, N bi-neighbourhood functions W — P(P(W) x P(W))
for every group g.
> wi-E;A iff  thereis (o, 8) € Ny (w) s.t. a C [A] and B C [A].
> wiFCg,A iff  thereis (o, 8) € Nf(w) s.t. a C [A] and 8 C [-A].
» Model conditions:

If (a0, B), ( ,5)€N]E(W) then (N7, BUG) € NF(w). (Cg)
If (o, B) € Nf(w), then w € av. (Te)
If (o, B) € /\/‘C(w) then 3 # 0. (Qc)
If (o, B) € Ny (w), then o # 0. (Pc)
NE(w) € NE(w). (Intec)
Ny (w) = 0. (Fe)

If (cr, 8) € NE (w) and (7.8) € N (w), then (a7, 8U3) € NEug(w).  (Inthe)
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1. BIAT logics in a nutshell
2. Semantics
3. Proof systems
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Desiderata on the proof system

1. Terminating proof search procedure.

2. Countermodel extraction from every single failed proof.

countermodel
S
§ v v VvV v X
@
L3
Q
2
a
a
7
£
2
E=3
g M3 A r3 A
DERIVABLE NOT DERIVABLE

=- Constructive decision procedure: for every formula a proof or a
countermodel.
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Hypersequents with blocks

Sequent calculi extended with additional structural connectives

Block: (), (¥)F, where ¥ multiset of formulas.

Sequent: T, {(Z1)F, ..., ():,,)j-c = A.
Hypersequent: T1 = A1 ...| = A,

Formula interpretation i

(A1, ..., An)E o Ei(ALA LA A)
(A1, ..., A0} o Ci(ALA A A
L. (Mf=A ~ ATAEAZALACGAN—=VA.

Semantic interpretation

wliFI=A iff  wlki(l= A).
MET=A iff  wl-T = A for every w of M.
MET:= A1 .| Th=A, iff METl;i= A forsomeiec{l,.. n}
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GI|T,EA (AF= A G|T,CA (AF = A

Ls
fTG|INLEA= A G|IT,CA= A
N GIT,(5)E = EAA

. GIT, (D) =>CAA L= A {G|T, () = CAA| A= Blgesr
- G|, (DF=CA A

C G| (D)7, (M (X, M = A G| (D, Z=A
. G|T,(D)E (ME=A LGN (EE= A

Q {G|T,(Z)f = A| = Blges 5 GIN,(Df=>A|X=>
- GIT, (D) = A TGN (EE=A

L GINEEEI =
Ntgc
GIT,(DF=A

» Separate left and right rules for E and C.
» One rule for every characteristic axiom.
» Cumulative rules: principal formulas always copied into the premiss.
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Semantic intuition

» Components represent the worlds of a model.
> Blocks represent truth sets of formulas: (A)F =~ [A] € NF(w).
» Rules express axiom conditions in the neighbourhood semantics:

A (AVE
G|LEA ()7 = A w ik EA = [A] € NE(w).

E

G|TLEA= A
c G|, (D MEF(Z,MF= A IANZDL IAN] € NE(w) =
. GIT (5)E (ME=A IAZINIAN] € VE(w).
intge 21 (D) (B = A [AZ] € NF(w) = [AZ] € NE(w).

GIT (D) =A

» Cumulative rules: A saturated hypersequent contains all information
needed to build a countermodel.
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Hypersequents and backtracking

Without hypersequents

—
non derivable g
% derivable derivable
p,q=p pP=p p=gq g_ : :
Rg pPANG=p p=pPAq 2 PANAa=aqAp qAp=pAq .
(PA@)F = Eip,Ei(qAp) Ly (pAQ)E=Eip,Ei(gAp)
Ei(p A q) = E;ip,Ei(q A p)
With hypersequents
. la,p=p . lg,p=q

(pAq); = Ep,E(qAp) | p=qlgAp=pAg .
(pAq); = Eip,Ei(qAp) | p=gq " N
(pA Q) = Eip,Ei(qAp) | p=pAq R
(pAq)i = Eip,Ei(q A p) -
Ei(p A q) = Eip,Ei(q A p)

E

= Decision procedure by a single proof
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Trade-off: Optimality vs. countermodels

Properties

» Admissibility of structural rules and syntactic cut elimination

» Termination of proof search (avoid redundant rule applications)

Sequents vs. hypersequents with blocks

> Sequents (Lellmann 2013)

e No direct extraction of countermodels
PSPACE proof-search

» Hypersequents with blocks

e Direct extraction of countermodels
e Sub-optimal proof-search n E-subformulas = 2" blocks

A necessary trade-off?

> A failed proof explicitly builds a model: A component for every world.

» Conjecture: Satisfiable formulas of size n whose smallest models have
2" worlds. Known for K (Blackburn et al. 2001).
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.
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F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

N7

AceT;
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

NN
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|
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

NN

AcT; A¢T;UA; Ac Ag

| |

i-A ? kI A

Impossible to determine [A].
= Impossible to define directly a neighbourhood model.
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

1st solution

Saturate with analytic cut:
G|IT'=AA G|AT=A
G|IIT=A

cut

Gain
» Fixes the extension of every subformula

» Constructs a standard neighbourhood model

Loss

» Strong increase in complexity
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

2nd solution

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

A A@éﬁUA,- AE‘A/( A
? I A

A* C [A] A C Al
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

2nd solution

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

A A@éﬁUA,- A€e Ay
? I A
AT C [A] A” C [-A]

:’Q: Bi-neighbourhood semantics!
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

2nd solution

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

A A@éﬁUA,- A€e Ay
? I A
AT C [A] A” C [-A]

[ EAcT, — (A", A7)eNE(m)
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Failure of delegation: Failed proof and bi-neighbourhood countermodel

saturated
(Esp)s, (p)E, (Eup)S, (P)5, P, Eop, EaEsp = Eap | p= Epp | = p
(Ebp)3, (P)b, (Eop)s, ()5, P, Eop, EaEsp = Eap | p = Eup
(Esp)5, (p)s, (Eop)s, p, Eop, EsEsp = Eap | p = Epp
(Ebp)s, (p)s, P, Eop, EaEpp = Eap | p = Epp T,
(Ebp)s, (P)b, Eop, EsEop = Eap | p = Eop
(Esp);, Ebp, EsEop = Eap | p = Epp

Intgc

Intgc

(Eop)s, EEop = Eap | p = Esp

<]Ebp>]§7 E.Epp = Eap
E.Epp = Eap

Re
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Failure of delegation: Failed proof and bi-neighbourhood countermodel

W= 1 2 3
(Esp)5, (P)E, (Eup)S, (P)5, P, Eop, EaEsp = Eap | p=> Eup | = p
(Ebp)3, (P)b, (Eop)s, (P)5, P, Eop, EaEpp = Eap | p = Epp
(Esp)3, (P)h, (Eop)S, p, Evp, EaEpp = Eap | p = Epp
(Eop)S, PV, P, Eop, EaEop = Eap | p = Eop
(Eop)E, (p)5, Eop, EuEop = Eop | p = Eop
(Ebp)s, Eop, EEop = Eap | p = Eop

Intgc

Intgc

(Ebp)s, EaEpp = Eap | p = Esp
(Epp)s, EsEpp = Eap
E.Eop = Eap

Re
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Failure of delegation: Failed proof and bi-neighbourhood countermodel

W= 1 2 3
(Esp)5, (P)h, (Eup)S, (P)5, P, Eop, EaEsp = Eap | p=> Eup | = p
(Ebp)3, (P)b, (Eop)s, (P)5, P, Eop, EaEpp = Eap | p = Epp
(Esp)3, (P)h, (Eop)S, p, Evp, EaEpp = Eap | p = Epp
(Eop)S, PV, P, Eop, EaEop = Eap | p = Eop
(Eop)E, (p)5, Eop, EuEop = Eop | p = Eop
(Ebp)s, Eop, EEop = Eap | p = Eop

Intgc

Intgc

(Ebp)s, EaEpp = Eap | p = Esp
(Epp)s, EsEpp = Eap
E.Eop = Eap

Re

> W={1,23} V(p)={1,2}

> p"={1,2}; p~ = {3} Esp” = {1}; and Esp~ = {2}

> N1 =Ny(1) ={(p",p )} ={({1,2},{3})} = 1IFEsp

> NF(1) = N5 (1) = {(Esp™, Eop )} = {({1}, {21)} = 1IF EsEop; 1) Eap
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Hypersequent calculus for coalition logic

Modular extention of H.ELG
» Rules of H.ELG (formulated with groups)

» Specific rules for groups:

G | |_, <Z>E <n>§2v <):7 n>g1ng = A

81’

GIT, (D)g (Mg, = A

Fc >

G| ()5 =A Intgc
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Example: No coalition monotonicity

saturated
(P)iay (PYCay P Egayp = Eqampp | = p

C
(P)ay (PYCayr P Egayp = Eqapyp

E Intgc
<p>{a}’ P, E{a}p = IE{a,b}p

(P)lfa}JE{a}P = Eg 5P
E{ayp=Efapyp
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Example: No coalition monotonicity

W= 1 2
(P (P (o P Eayp = Eapyp | = p

C
<p>]%a}’ <p>([{:a}’ p»]E{a}p = IE{a,b}p

B Intgc
<p>{a}’ P ]E{a}p = IE{a,b}p

P}y E(ayp = Egapyp

Egayp = Efapyp

> wW={12} V(p)={1}

> pt={1}; p” ={2}

> Nopy () ={(p" )} ={({1}.{2})} = 1IFE(p
> N (1) =0 = 1/ Eqapyp
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Conclusion

Summary

» Hypersequent calculi and bi-neighbourhood semantics for Elgesem’s
agency logic and Troquard's coalition logic

» Constructive decision procedure: for every formula a proof or a
countermodel

To do
» Cover further extensions
» Implementation (HYPNO) style

Open problem

» Proof-theoretic interpolation

T. Dalmonte, C. Grellois, and N. Olivetti. Systémes de preuve pour les
logiques de "Bringing-it-About". JIAF 2021

T. Dalmonte, C. Grellois, and N. Olivetti. Proof systems for the logics of
inging-it-about. DEON 2020/21
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http://193.51.60.97:8000/HYPNO/

Any questions?
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